dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Femtosekundenlaser - Einführung in die Technologie der ultrakurzen Lichtimpulse

Klemens Jesse

 

Verlag Springer-Verlag, 2005

ISBN 9783540275022 , 266 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

66,99 EUR


 

5 Ultrakurzzeitlasertypen (S. 63-64)

Der erste Laser blitzte am 15. Mai 1960 in einem Labor der Hughes Aircraft Corporation auf. Die Konstruktion aus einem Rubinstab als Lasermedium und einer ihn umgebenden gewendelten Blitzröhre als Pumpquelle stammte von Theodore Maiman. Die Enden des Rubinstabs waren mit Spiegeln, einer davon halbdurchlässig, versehen. Die heutige Laserforschung kann auf eine Vielzahl von Lasertypen mit unterschiedlichsten Eigenschaften und Fähigkeiten für eine Vielzahl von Anwendungen zurückgreifen. Eine besondere Eigenschaft des Laserlichts ist die Tatsache, dass mit dem Laser ultrakurze Lichtpulse erzeugt werden können, und zwar mit Dauern im Femtosekunden-, ja sogar im Attosekundenbereich. Mit der Femtosekundenoptik lassen sich Abläufe atomarer oder biologischer Vorgänge stroboskopartig verfolgen. Enorme Pulsleistungen von einigen Terawatt stehen bereits zur Verfügung. Eine einfache Abschätzung demonstriert die Wirksamkeit dieser Pulse. Die Intensität eines 10 fs Pulses mit einer Pulsenergie von 1 mJ beträgt im Fokus (10 µm Durchmesser) etwa 1017 W/cm2. Im Vergleich hierzu kann eine Herdplatte schon mit 10 W/cm2 zum Glühen gebracht werden, und die Sonne liefert auf der Erdoberfläche nur 0.1 W/cm2. Erfolge in der Pulsverkürzung führten dazu, dass Pulsdauern auch unterhalb einer Femtosekunde erzielt werden können. Damit beginnt ein neues Zeitalter für den Physiker: die Attophysik. Dem Wiener Physiker und Wittgenstein-Preisträger Ferenc Krausz gelang es erstmalig, mit Hilfe ultrakurzer Laserblitze das Verhalten von Elektronen in der Atomhülle direkt zu beobachten und zu „fotografieren". Für ihre Untersuchungen benutzten die Forscher nur 900 Attosekunden kurze Pulse. In der Zeitschrift „Nature" berichteten sie über die ersten Anwendungen ihrer kurzen Pulse [62].

Ein erster Röntgenpuls von der Dauer unter einer Femtosekunde schlug aus den inneren Atomschalen eines Edelgases (Krypton) ein Elektron heraus, so dass kurzfristig ein Loch entstand, das durch ein nachrückendes Elektron aus der äußeren Schale gefüllt wurde. Um diesen Vorgang zeitlich zu verfolgen, schickten sie kurz nach dem ersten Röntgenpuls einen zweiten, etwas längeren Blitz sichtbaren Lichts. Die Röntgenlaser befinden sich heutzutage noch im Entwicklungsstadium, und ein kommerzieller Lasertyp, der kohärente Strahlung im XUV- und Röntgenbereich liefert, wird erst in Jahren folgen. Der Vorstoß in den neuen Zeit bereich ist revolutionär zu nennen. Eine Femtosekunde verhält sich nämlich im Vergleich zu einer Sekunde in etwa so wie fünf Minuten im Vergleich zum Alter des Universums. Eine Femtosekunde sind 1000 Attosekunden. Bisher waren der weiche Röntgen- und Vakuum-Ultraviolettbereich die unangefochtenen Domänen der Synchrotonstrahlung oder neuartiger Laserquellen wie dem Freie-Elektronen-Laser (FEL). Das nächste angepeilte Ziel der Laseringenieure wird die Erweiterung des Spektralbereichs und der Bau eines Röntgenlasers sein. Es muss über Konzepte für einen solchen Lasertyp, die Erzeugung sehr hoher Harmonischer, oder laserbasierte, kurzwellige Plasmaquellen für industrielle Anwendungen zur Halbleiterherstellung nachgedacht werden. Auch die Röntgenoptik (diffraktive Optiken, Multilayer-Optiken), die Strahlcharakterisierung und die Detektortechnologie kurzwelliger Strahlung müssen weiterentwickelt werden. Seit 1972 entwickelten Forscher Lasergeräte mit ultrakurzen Pulsen, die bald auch in den Femtosekundenbereich vorstießen. Diese kurzen Pulse können genutzt werden, um schnelle chemische Vorgänge wie eine Art Licht-Stroboskop in Einzelbilder zu zerlegen (Femtochemie). Der Titan- Saphir-Laser arbeitet im Infraroten bzw. sichtbarroten Spektralbereich und hat sich bisher in den Labors durchgesetzt, so dass auch einzelne Molekülschwingungen mit einer Dauer zwischen 10 und 100 fs sichtbar gemacht werden konnten. Neben den Festkörperlasern gibt es außerdem Gas-, Halbleiter-, chemische und Farbstofflaser, die monochromatisches Licht sehr hoher Energiedichte bzw. extrem kurze Lichtimpulse liefern. Für Femtosekundenlaser kommen wegen des Modenkoppelprozesses aber nur Materialien mit einer bestimmten Energiebandbreite und speziellen Lebensdauern der angeregten Energieniveaus in Frage. Im Folgenden werden wir auf die wichtigsten Femtosekundenlaserarten, die jetzt zur Verfügung stehen, eingehen. Die Meilensteine des Lasers sind in folgender Tabelle chronologisch aufgelistet.