dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Multiscale Modelling in Sheet Metal Forming

Dorel Banabic

 

Verlag Springer-Verlag, 2016

ISBN 9783319440705 , 416 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

96,29 EUR


 

Preface

7

Contents

11

Contributors

12

1 Plastic Behaviour of Sheet Metals

13

1.1 Anisotropy of Sheet Metals

13

1.1.1 Uniaxial Characteristics of Plastic Anisotropy

13

1.1.2 Biaxial Characteristics of Plastic Anisotropy

17

1.2 Classical Yield Criteria for Anisotropic Sheet Metals

18

1.2.1 Hill (1948) Yield Criterion

18

1.2.2 Barlat (1989) Yield Criterion

19

1.3 BBC (2005) Yield Criterion

21

1.3.1 Equation of the Yield Surface

21

1.3.2 Flow Rule Associated to the Yield Surface

22

1.3.3 BBC (2005) Equivalent Stress

22

1.3.4 Identification Procedure

24

1.3.5 Theoretical Yield Stress in Pure Tension

25

1.3.6 Theoretical Coefficient of Uniaxial Plastic Anisotropy

25

1.3.7 Theoretical Yield Stress in Biaxial Tension Along RD and TD

28

1.3.8 Theoretical Coefficient of Biaxial Plastic Anisotropy

29

1.3.9 Identification Constraints

31

1.3.10 Particular Formulations of the BBC (2005) Yield Criterion

35

1.4 BBC (2008) Yield Criterion

36

1.4.1 BBC 2008 Equivalent Stress

36

1.4.2 Basic Identification Procedure

37

1.4.3 Enhanced Identification Procedure

41

1.5 3D Extensions of the BBC (2005, 2008) Yield Criteria

46

1.6 Advanced Anisotropic Yield Criteria

47

1.6.1 Barlat Yield Criteria

48

1.6.2 Cazacu-Barlat Yield Criteria

52

1.6.3 Vegter Yield Criterion

55

1.7 Recommendations on the Choice of the Yield Criteria

56

1.8 Perspectives

57

References

57

2 Crystallographic Texture and Plastic Anisotropy

59

2.1 The Structure of Polycrystalline Materials

59

2.2 Definition of Crystallographic Texture

60

2.2.1 Crystal Orientation

61

2.3 Experimental Determination of Textures

62

2.4 Texture and Properties of Materials

67

2.5 Plasticity of Polycrystalline Materials

69

2.5.1 The Taylor Model (Full-Constraints)

72

2.5.2 Special Plasticity Parameters

79

2.5.3 Plasticity of Cubic Metals

82

2.5.4 Deformation Hardening

85

2.5.5 Plasticity of Macroscopic Bodies

85

2.6 Parameterization of the Texture Function

86

2.7 Other Modes of Plasticity

87

References

88

3 Multiscale Modelling of Mechanical Anisotropy

91

3.1 Introduction

91

3.2 Multiscale Frameworks in Crystal Plasticity

95

3.2.1 Statistical Crystal Plasticity

96

3.2.1.1 Sachs-Type Models

96

3.2.1.2 Taylor-Type Models

97

3.2.1.3 Grain Interaction Models

97

3.2.1.4 Self-consistent Schemes

98

3.2.2 Full-Field Approaches

98

3.2.2.1 Crystal Plasticity Finite Element Method

99

3.2.2.2 Crystal Plasticity FFT

100

3.3 Multi-scale Modelling of Plastic Anisotropy

101

3.3.1 Direct Micro-Macro Coupling

102

3.3.1.1 Embedded Full-Field Models

102

3.3.1.2 Embedded Mean-Field Models

103

3.3.1.3 Embedded Reduced Texture Models

104

3.3.2 Hierarchical Coupling

105

3.3.2.1 Database and Sampling Techniques

105

3.3.2.2 Spectral Crystal Plasticity (SCP)

105

3.3.3 Yield Criteria Based on Crystal Plasticity

107

3.3.3.1 Yield Criteria Defined by Interpolation

107

3.3.3.2 Yield Criteria Defined by Approximation

108

3.3.3.3 Evolving BBC2008 Yield Criterion

110

3.3.4 Other Concepts in Multi-scale Modelling of Plastic Anisotropy

135

Acknowledgments

137

References

137

4 Modelling the Voids Growth in Ductile Fracture

147

4.1 Models for Ductile Fracture

147

4.1.1 Void Shape Effects

149

4.1.2 Anisotropic Plasticity

150

4.2 Anisotropic GTN Model for Sheet Metal Forming

150

4.2.1 GTN Models for Sheet Metal Forming

151

4.2.2 Anisotropic GTN Model with Hill 48 Yield Criterion

151

4.2.3 Determination of GTN Parameters from Uniaxial Tests

154

4.2.4 Simulation of a Deep Drawing Process

155

4.3 Development of a Gurson Type Model for Some Advanced Yield Criteria for Sheet Metals

158

4.3.1 Limit Analysis and Homogenization

159

4.3.2 An Introduction to Gurson Type Models

162

4.3.3 Dissipation Functions for Some Non-quadratic Anisotropic Yield Criteria

167

4.3.3.1 Yield Criteria Yld91 and Yld2004-18p

168

4.3.3.2 Dissipation Function for the Yld91 Criterion

170

4.3.3.3 Dissipation Function for the Yld2004-18p Criterion

173

4.3.3.4 BBC2005 Criterion and Dissipation Function

175

4.3.4 Gurson-Type Models for Some Anisotropic Yield Criteria Based on Linear Transformations

178

4.4 Mie Decomposition of Incompressible Vector Fields in Ellipsoidal Coordinates

188

4.4.1 Natural Ellipsoidal Coordinates

189

4.4.2 Laplace’s Equation in Natural Ellipsoidal Coordinates

192

4.4.3 Some Properties of Surface Ellipsoidal Harmonics

194

4.4.4 Incompressible Vector Fields by Piola Transforms

196

4.4.5 The Ellipsoidal Mie Decomposition for Incompressible Vector Fields

200

4.5 Calibration of Gurson Type Models via the Mie Decomposition

204

4.5.1 The Homogenization Limit Analysis Problem

204

4.5.2 Boundary Conditions

206

4.5.3 Calibration of Gurson Type Models

210

4.6 Conclusions

212

References

213

5 Advanced Models for the Prediction of Forming Limit Curves

216

5.1 Failure in Sheet Metal Forming Operations

216

5.1.1 Diffuse Necking—Localized Necking—Ductile Fracture

217

5.1.2 Diffuse Necking—Localized Necking—Shear Instability—Ductile Fracture

217

5.1.3 Diffuse Necking—Shear Instability—Ductile Fracture

217

5.2 Forming Limit Diagram: Introduction

219

5.3 Experimental Formability Tests

223

5.3.1 An Overview of Experimental Formability Tests

224

5.3.2 Experimental Formability Observations Concerning the Influence of Sheet Curvature

227

5.3.3 Experimental Formability Observations Concerning the Influence of Sheet Thickness

229

5.3.4 Experimental Formability Observations Concerning the Combined Influence of Sheet Curvature and Thickness

230

5.3.5 Experimental Formability Observations Concerning the Influence of Temperature

231

5.3.6 Experimental Formability Observations Concerning the Influence of Strain Rate

232

5.4 Forming Limit Models

234

5.4.1 Diffuse Necking Models

235

5.4.1.1 Swift’s Model

235

5.4.1.2 Modified Maximum Force Criterion (MMFC)

236

5.4.2 Localized Necking Model (Hill’s Model)

239

5.4.3 Assessing the Formability of Metallic Sheets by Means of Localized and Diffuse Necking Models

240

5.4.3.1 Constitutive Equations

240

5.4.3.2 Localized and Diffuse Necking Models

242

5.4.4 Marciniak-Kuckzynski (M-K) Model

248

5.4.4.1 Overview

248

5.4.4.2 Implicit Formulation of the M-K and H-N Models

251

5.4.4.3 Comparison of the FLC’s Predicted by Different Theoretical Models

261

5.4.4.4 Non-zero Thickness Stress

262

5.4.4.5 Non-zero Through-Thickness Shear Stress

265

5.4.5 Crystal Plasticity Based FLC Prediction

269

5.4.5.1 Crystal Plasticity in MK Analysis

271

5.4.5.2 Formability Modelling Through Crystal Plasticity in FEM (CPFEM)

273

5.4.6 Void Growth Based FLC Prediction

274

5.4.6.1 Modelling of FLC using the GTN Model

274

5.4.6.2 FLC Prediction by Numerical Simulation of Traditional Formability Tests

274

5.4.6.3 FLC Prediction by Combined M-K and GTN Models

283

5.4.6.4 Theoretical Model for Forming Limit Diagram Predictions Without Initial Inhomogeneity

288

Limit Analysis Interpretation of the MK Model

288

Coalescence Models for Ductile Porous Materials

290

5.4.6.5 Necking Model Based on Limit Analysis for Porous Sheets

291

Numerical Results

294

5.4.7 Other Models

295

5.4.7.1 Bifurcation Models

295

5.4.7.2 Perturbation Models

296

5.4.8 Semi-empirical Models

296

5.5 Commercial Programs for FLC Prediction

297

5.5.1 FORM-CERT Program

297

5.5.1.1 Calculation and Displaying the FLC

299

5.5.1.2 “Experimental Data” Module

299

5.5.2 Other Programs

300

5.6 Conclusions

301

References

301

6 Anisotropic Damage in Elasto-plastic Materials with Structural Defects

312

6.1 Introduction

312

6.1.1 List of Notation

316

6.2 Damage State

317

6.2.1 Isotropic Damage

318

6.2.2 Void Volume Fraction

319

6.2.3 Effect of Stress Triaxiality

320

6.2.4 Undamaged Configuration

321

6.3 Models with Damage State Variables

324

6.3.1 Model with Multiple Undamaged Configurations

324

6.3.2 Crystal Plasticity Model Coupled with Anisotropic Damage

329

6.3.3 Lemaitre and Chaboche Models

334

6.4 Model with Stress-Free Undamaged Configuration and Deformation-like Damage Tensor {\textbf{F}}^{d}

337

6.4.1 Elastic Type Response Dependent on Damage

339

6.4.2 Equations for Damage and Plasticity

341

6.4.3 Dissipative Nature of the Irreversible Behaviour

342

6.4.4 Constitutive Models

345

6.5 Models with Non-metric Property

347

6.5.1 Constitutive Hypotheses

348

6.5.2 Dissipation Postulate

351

6.5.3 Constitutive and Evolution Equations with Respect to the Reference Configuration

353

6.5.4 Model Proposed by Aslan et al. (2011)

357

6.6 Conclusion

359

References

360

7 Modelling the Portevin-Le Chatelier Effect—A Study on Plastic Instabilities and Pattern Formation

362

7.1 Introduction

362

7.1.1 Experimental and Physical Aspects

364

7.1.2 Main Ideas for the Constitutive Modelling of the PLC Effect

369

7.2 An Elastic-Viscoplastic Model with ‘‘Negative Strain-Rate Sensitivity’’ of McCormick Type

373

7.3 One-Dimensional Stress State

377

7.3.1 Constitutive Relations

377

7.3.2 Field Equations and Initial-Boundary Value Problems

379

7.3.3 A Numerical Investigation

381

7.3.3.1 Strain-Controlled Experiments

382

7.3.3.2 Stress-Controlled Experiments

389

7.4 A Methodology for Investigating Mechanical Parameters for Critical Conditions on PLC Effect

391

7.4.1 Temporal Stability Analysis of Serrated Curves

392

7.4.2 Calibration of Mechanical Parameters

397

7.5 Conclusions and Outlook

407

Acknowledgments

408

Appendix: Numerical Scheme

408

References

412

8 Erratum to: Multiscale Modelling in Sheet Metal Forming

415

Erratum to: D. Banabic (ed.), Multiscale Modelling in Sheet Metal Forming, ESAFORM Bookseries on Material Forming, DOI 10.1007/978-3-319-44070-5

415

Author Index

416