dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Dynamic Mixed Models for Familial Longitudinal Data

Dynamic Mixed Models for Familial Longitudinal Data

Brajendra C. Sutradhar

 

Verlag Springer-Verlag, 2011

ISBN 9781441983428 , 494 Seiten

Format PDF

Kopierschutz Wasserzeichen

Geräte

96,29 EUR

  • Catalysts for Upgrading Heavy Petroleum Feeds
    Handbook of Set Theory
    Embedded Systems Design with Platform FPGAs - Principles and Practices
    Designing Embedded Systems with PIC Microcontrollers - Principles and Applications
    Industrial Applications of Batteries - From Cars to Aerospace and Energy Storage
    American Trypanosomiasis - Chagas Disease One Hundred Years of Research
    Statistical Methods
    Introductory Statistics
  • Plant Systematics
    Advances in Imaging and Electron Physics - Optics of Charged Particle Analyzers
    Superlattice to Nanoelectronics
    Interpretation of Micromorphological Features of Soils and Regoliths

     

     

     

     

     

 

 

Dynamic Mixed Models for Familial Longitudinal Data

3

Preface

7

Acknowledgements

11

Contents

13

Chapter 1 Introduction

19

1.1 Background of Familial Models

19

1.2 Background of Longitudinal Models

21

References

24

Chapter 2 Overview of Linear Fixed Models for Longitudinal Data

27

2.1 Estimation of ß

28

2.1.1 Method of Moments (MM)

28

2.1.2 Ordinary Least Squares (OLS) Method

29

2.1.2.1 Generalized Least Squares (GLS) Method

30

2.1.3 OLS Versus GLS Estimation Performance

31

2.2 Estimation of ß Under Stationary General Autocorrelation Structure

32

2.2.1 A Class of Autocorrelations

32

2.2.2 Estimation of ß

36

2.3 A Rat Data Example

37

2.4 Alternative Modelling for Time Effects

41

Exercises

42

References

44

Appendix

45

Chapter 3 Overview of Linear Mixed Models for Longitudinal Data

47

3.1 Linear Longitudinal Mixed Model

48

3.1.1 GLS Estimation of ß

49

3.1.2 Moment Estimating Equations for s². and .l

50

3.1.3 Linear Mixed Models for Rat Data

51

3.2 Linear Dynamic Mixed Models for Balanced Longitudinal Data

54

3.2.1 Basic Properties of the Dynamic Dependence Mixed Model (3.21)

55

3.2.2 Estimation of the Parameters of the Dynamic Mixed Model (3.21)

56

3.3 Further Estimation for the Parameters of the Dynamic Mixed Model

60

3.3.1 GMM/IMM Estimation Approach

61

3.3.2 GQL Estimation Approach

66

3.3.3 Asymptotic Efficiency Comparison

70

Exercises

73

References

75

Chapter 4 Familial Models for Count Data

77

4.1 Poisson Mixed Models and Basic Properties

78

4.2 Estimation for Single Random Effect Based Parametric Mixed Models

81

4.2.1 Exact Likelihood Estimation and Drawbacks

81

4.2.2 Penalized Quasi-Likelihood Approach

83

4.2.3 Small Variance Asymptotic Approach: A Likelihood Approximation (LA)

86

4.2.3.1 A Higher-Order Likelihood Approximation (HOLA)

89

4.2.4 Hierarchical Likelihood (HL) Approach

93

4.2.5 Method of Moments (MM)

95

4.2.6 Generalized Quasi-Likelihood (GQL) Approach

96

4.2.6.1 Marginal Generalized Quasi-Likelihood (GQL) Estimation of ß

97

4.2.6.2 Marginal Generalized Quasi-Likelihood (GQL) Estimation of s².

98

4.2.6.3 Joint Generalized Quasi-Likelihood (GQL) Estimation for ß and s².

101

4.2.7 Efficiency Comparison

103

4.2.7.1 Efficiency Comparison Between GQL and MM Approaches: A Small Sample Study

103

4.2.7.2 Efficiency Comparison Between GQL and HL Approaches: A Small Sample Study

106

4.2.8 A Health Care Data Utilization Example

109

4.3 Estimation for Multiple Random Effects Based Parametric Mixed Models

112

4.3.1 Random Effects in a Two-Way Factorial Design Setup

112

4.3.2 One-Way Heteroscedastic Random Effects

112

4.3.3 Multiple Independent Random Effects

113

4.3.3.1 Method of Moments Estimation for ß, s². , and s²t

114

4.3.3.2 Joint GQL Estimation for ß, s². , and s²t

115

4.3.3.3 Relative Performances of the GQL Versus MM Approaches: An Asymptotic Efficiency Comparison

117

4.3.3.4 GQL Versus MM Estimation: A Simulation Study Based on an Asthma Count Data Model with Two Components of Dispersion

120

4.3.3.5 An Asthma Count Data Model with Four Fixed Covariates and Two Components of Dispersion

120

4.4 Semiparametric Approach

122

4.4.1 Computations for µi, .i, Si, and Oi

125

4.4.2 Construction of the Estimating Equation for When ß When s². Is Known

128

4.5 Monte Carlo Based Likelihood Estimation

129

4.5.1 MCEM Approach

131

4.5.2 MCNR Approach

131

Exercises

132

References

135

Chapter 5 Familial Models for Binary Data

137

5.1 Binary Mixed Models and Basic Properties

138

5.1.1 Computational Formulas for Binary Moments

141

5.2 Estimation for Single Random Effect Based Parametric Mixed Models

142

5.2.1 Method of Moments (MM)

142

5.2.2 An Improved Method of Moments (IMM)

144

5.2.2.1 Can There Be an Optimal B Free from Third and Fourth-Order Moments Under Simple Binary Logistic Mixed Models?

145

5.2.2.2 Effect of Mis-specification For Optimal Choice

148

5.2.3 Generalized Quasi-Likelihood (GQL) Approach

149

5.2.3.1 Marginal Generalized Quasi-Likelihood Estimation of ß

149

5.2.3.2 Marginal Generalized Quasi-Likelihood Estimation of s.

150

5.2.3.3 Joint Generalized Quasi-Likelihood (GQL) Estimation for ß and s.

152

5.2.4 Maximum Likelihood (ML) Estimation

153

5.2.5 Asymptotic Efficiency Comparison

156

5.2.5.1 Asymptotic variance of the IMM Estimator

156

5.2.5.2 Asymptotic Variance of the GQL Estimator

157

5.2.5.3 Asymptotic Variance of the ML Estimator

158

5.2.5.4 Numerical Comparison

160

5.2.6 COPD Data Analysis: A Numerical Illustration

161

5.3 Binary Mixed Models with Multidimensional Random Effects

164

5.3.1 Models in Two-Way Factorial Design Setup and Basic Properties

164

5.3.1.1 Unconditional Mean

165

5.3.1.2 Unconditional Covariances and Correlations in a Two-Way Design Setup

166

5.3.2 Estimation of Parameters

167

5.3.2.1 Estimation of Regression Effects ß

167

5.3.2.2 Estimation of the Variance Component s². Due to Factor A

169

5.3.2.3 Estimation of the Variance Component s² a Due to Factor B

173

5.3.3 Salamander Mating Data Analysis

178

5.3.3.1 Data Description

178

5.3.3.2 Binary Mixed Model for Salamander Data

179

5.3.3.3 Model Parameters Estimation and Interpretation

180

5.4 Semiparametric Approach

182

5.4.1 GQL Estimation

182

5.4.2 A Marginal Quasi-Likelihood (MQL) Approach

184

5.4.3 Asymptotic Efficiency Comparison: An Empirical Study

185

5.5 Monte Carlo Based Likelihood Estimation

187

Exercises

187

References

190

Appendix

192

Chapter 6 Longitudinal Models for Count Data

198

6.1 Marginal Model

199

6.2 Marginal Model Based Estimation of Regression Effects

200

6.3 Correlation Models for Stationary Count Data

202

6.3.1 Poisson AR(1) Model

203

6.3.2 Poisson MA(1) Model

204

6.3.3 Poisson Equicorrelation Model

204

6.4 Inferences for Stationary Correlation Models

205

6.4.1 Likelihood Approach and Complexity

205

6.4.2 GQL Approach

206

6.4.2.1 Asymptotic Distribution of the GQL Estimator

207

6.4.2.2 ‘Working’ Independence Assumption Based GQL Estimation

208

6.4.2.3 Efficiency of the Independence Assumption Based Estimator

208

6.4.2.4 Performance of the GQL Estimation: A Simulation Example

210

6.4.3 GEE Approach and Limitations

213

6.4.3.1 Efficiency of the GEE Based Estimator Under Correlation Structure Mis-specification

213

6.5 Nonstationary Correlation Models

218

6.5.1 Nonstationary Correlation Models with the Same Specified Marginal Mean and Variance Functions

219

6.5.1.1 Nonstationary AR(1) Models

219

6.5.1.2 Nonstationary MA(1) Models

220

6.5.1.3 Nonstationary EQC Models

220

6.5.2 Estimation of Parameters

222

6.5.2.1 Estimation of r Parameter Under AR(1) Model

222

6.5.2.2 Estimation of r Parameter Under MA(1) Correlation Model

223

6.5.2.3 Estimation of . Parameter Under Exchangeable (EQC) Correlation Model

223

6.5.3 Model Selection

224

6.6 More Nonstationary Correlation Models

226

6.6.1 Models with Variable Marginal Means and Variances

226

6.6.1.1 Nonstationary MA(1) Models

226

6.6.2 Estimation of Parameters

228

6.6.2.1 GQL Estimation for Regression Effects ß

228

6.6.2.2 Moment Estimation for the Correlation Parameter .

229

6.6.3 Model Selection

230

6.6.4 Estimation and Model Selection: A Simulation Example

232

6.6.4.1 Simulated Estimates Under the True and Misspecified Models

232

6.6.4.2 Model Selection

233

6.7 A Data Example: Analyzing Health Care Utilization Count Data

234

6.8 Models for Count Data from Longitudinal Adaptive Clinical Trials

236

6.8.1 Adaptive Longitudinal Designs

237

6.8.1.1 Simple Longitudinal Play-the-Winner (SLPW) Rule to Formulate wi

239

6.8.1.2 Bivariate Random Walk (BRW) Design

240

6.8.2 Performance of the SLPW and BRW Designs For Treatment Selection: A Simulation Study

241

6.8.3 Weighted GQL Estimation for Treatment Effects and Other Regression Parameters

244

6.8.3.1 Formulas for µi(wi0), and Si* (wi0,.) :

244

6.8.3.2 Weighted GQL Estimation of ß

246

Exercises

248

References

251

Appendix

253

Chapter 7 Longitudinal Models for Binary Data

258

7.1 Marginal Model

260

7.1.1 Marginal Model Based Estimation for Regression Effects

261

7.2 Some Selected Correlation Models for Longitudinal Binary Data

262

7.2.1 Bahadur Multivariate Binary Density (MBD) Based Model

263

7.2.1.1 Stationary Case

263

7.2.1.2 Nonstationary Case

265

7.2.2 Kanter Observation-Driven Dynamic (ODD) Model

266

7.2.2.1 Stationary Case

266

7.2.2.2 Non-stationary Case

268

7.2.3 A Linear Dynamic Conditional Probability (LDCP) Model

269

7.2.3.1 Stationary Case

269

7.2.3.2 Nonstationary Case

271

7.2.4 A Numerical Comparison of Range Restrictions for Correlation Index Parameter Under Stationary Binary Models

271

7.3 Low-Order Autocorrelation Models for Stationary Binary Data

273

7.3.1 Binary AR(1) Model

273

7.3.2 Binary MA(1) Model

273

7.3.3 Binary Equicorrelation (EQC) Model

276

7.3.4 Complexity in Likelihood Inferences Under Stationary Binary Correlation Models

277

7.3.5 GQL Estimation Approach

278

7.3.5.1 Efficiency of the Independence Assumption Based Estimation

279

7.3.6 GEE Approach and Its Limitations for Binary Data

281

7.4 Inferences in Nonstationary Correlation Models for Repeated Binary Data

283

7.4.1 Nonstationary AR(1) Correlation Model

283

7.4.2 Nonstationary MA(1) Correlation Model

285

7.4.3 Nonstationary EQC Model

286

7.4.4 Nonstationary Correlations Based GQL Estimation

287

7.4.4.1 Estimation of . Parameter Under Binary AR(1) Model

289

7.4.4.2 Estimation of . Parameter Under Binary MA(1) Correlation Model

289

7.4.4.3 Estimation of . Parameter Under Exchangeable (EQC) Correlation Model

290

7.4.5 Model Selection

290

7.5 SLID Data Example

291

7.5.1 Introduction to the SLID Data

291

7.5.2 Analysis of the SLID Data

293

7.6 Application to an Adaptive Clinical Trial Setup

295

7.6.1 Binary Response Based Adaptive Longitudinal Design

295

7.6.1.1 Simple Longitudinal Play-the-Winner (SLPW) Rule to Formulate wi

297

7.6.1.2 Performance of the Adaptive Design

299

7.6.2 Construction of the Adaptive Design Weights Based Weighted GQL Estimation

302

7.6.2.1 Computation of Unconditional Expectation of di : wi0

302

7.6.2.2 WGQL Estimating Equations for Regression Parameters Including the Treatment Effects

303

7.6.2.2.1 Moment Estimates for Longitudinal Correlations

306

7.6.2.2.2 Asymptotic Variances of the WGQL Regression Estimates

307

7.7 More Nonstationary Binary Correlation Models

307

7.7.1 Linear Binary Dynamic Regression (LBDR) Model

307

7.7.1.1 Autocorrelation Structure

308

7.7.1.2 GQL and Conditional GQL (CGQL) Approaches for Parameter Estimation

309

7.7.2 A Binary Dynamic Logit (BDL) Model

312

7.7.2.1 Basic Properties of the Lag 1 Dependence Model (7.142)

312

7.7.2.2 Estimation of the Parameters of the BDL Model

314

7.7.2.2.1 GQL Estimation

315

7.7.2.2.2 OGQL Estimation

316

7.7.2.2.3 Likelihood Estimation

321

7.7.2.3 Fitting Asthma Data to the BDL Model: An Illustration

322

7.7.3 Application of the Binary Dynamic Logit (BDL) Model in an Adaptive Clinical Trial Setup

324

7.7.3.1 Random Treatments Based BDL Model

324

7.7.3.1.1 Unconditional Moments Up to Order Four

325

7.7.3.1.2 Extended WGQL (EWGQL) or Weighted OGQL (WOGQL) Estimating Equation

328

Exercises

331

References

333

Appendix

335

Chapter 8 Longitudinal Mixed Models for Count Data

338

8.1 A Conditional Serially Correlated Model

338

8.1.1 Unconditional Mean, Variance, and Correlations Under Serially Correlated Model

340

8.2 Parameter Estimation

340

8.2.1 Estimation of the Regression Effects ß

341

8.2.1.1 GMM/IMM Approach

341

8.2.1.2 GQL Approach

342

8.2.1.3 Conditional Maximum Likelihood (CML) Approach

343

8.2.1.4 Instrumental Variables Based GMM (IVBGMM) Estimation Approach

344

8.2.1.5 A Simulation Study

346

8.2.2 Estimation of the Random Effects Variance s². :

349

8.2.2.1 GMM Estimation for s².

349

8.2.2.2 GQL Estimation for s². :

351

8.2.2.3 Asymptotic Efficiency Comparison : GMM versus GQL

352

8.2.2.3.1 Asymptotic Variances of the GMM Estimators

352

8.2.2.3.2 Asymptotic Variances of the GQL Estimators

352

8.2.2.3.3 Asymptotic Efficiency Computation

353

8.2.3 Estimation of the Longitudinal Correlation Parameter .

354

8.2.3.1 GMM Estimation for .

354

8.2.3.2 . Estimation Under the GQL Approach

355

8.2.4 A Simulation Study

356

8.2.4.1 Estimation Under the ‘Working’ Conditional Independence (. = 0) Model

360

8.2.4.2 Estimation Under the ‘Working’ Longitudinal Fixed (s². = 0) Model

362

8.2.5 An Illustration: Analyzing Health Care Utilization Count Data by Using Longitudinal Fixed and Mixed Models

363

8.3 A Mean Deflated Conditional Serially Correlated Model

365

8.3.1 First and Second-Order Raw Response Based GQL Estimation

366

8.3.1.1 GQL(I) Approach for s². Estimation

366

8.3.1.2 GQL(N) Approach for s². Estimation

366

8.3.2 Corrected Response (CR) Based GQL Estimation

368

8.3.2.1 GQL(CR-I) Estimation for s².

368

8.3.2.2 GQL(CR-N) Estimation s².

370

8.3.3 Relative Performances of GQL(I) and GQL(N) Estimation Approaches: A Simulation Study

371

8.3.3.1 Performance for Overdispersion Estimation

371

8.3.3.2 Performance for Regression Effects Estimation

372

8.3.3.3 Performance for Correlation Index Estimation

374

8.3.4 A Further Application: Analyzing Patent Count Data

374

8.4 Longitudinal Negative Binomial Fixed Model and Estimationof Parameters

379

8.4.1 Inferences in Stationary Negative Binomial CorrelationModels

380

8.4.1.1 Estimation of Parameters

381

8.4.1.1.1 GQL Estimation for ß

381

8.4.1.1.2 Estimation of c*

382

8.4.1.1.3 Moment Estimation of .

384

8.4.2 A Data Example: Analyzing Epileptic Count Data by Using Poisson and Negative Binomial Longitudinal Models

384

8.4.3 Nonstationary Negative Binomial Correlation Models and Estimation of Parameters

386

8.4.3.1 First Two Moments Based Negative Binomial Autoregression Model

386

8.4.3.1.1 Nonstationary Mean Variance Structure

387

8.4.3.1.2 Non-stationary Correlation Structure

388

8.4.3.2 A Proposed Conditional GQL (CGQL) Estimation Approach

388

8.4.3.2.1 CGQL Estimation for ß

389

8.4.3.2.2 CGQL Estimation for c*

390

8.4.3.2.3 MMs Equation for .

392

Exercises

392

References

394

Appendix

396

Chapter 9 Longitudinal Mixed Models for Binary Data

405

9.1 A Conditional Serially Correlated Model

406

9.1.1 Basic Properties of the Model

406

9.1.2 Parameter Estimation

408

9.1.2.1 GQL Estimation of the Regression Effects ß

408

9.1.2.2 GQL Estimation of the Random Effects Variance s².

409

9.1.2.2.1 GQL(I) Estimation of s².

410

9.1.2.2.2 GQL(N) Estimation of s².

410

9.1.2.3 Estimation of . Under the GQL Approach

411

9.2 Binary Dynamic Mixed Logit (BDML) Model

412

9.2.1 GMM/IMM Estimation

414

9.2.1.1 Construction of the Unbiased Moment Functions

414

9.2.1.1.1 Formula for pit

415

9.2.1.1.2 Formula for .iut

415

9.2.1.2 GMM Estimating Equation for a = (ß', ., s². )'

416

9.2.1.2.1 Computation of the C Matrix

417

9.2.1.2.2 Computation of ..'/.a

419

9.2.2 GQL Estimation

419

9.2.2.1 Computation of Oi

420

9.2.3 Efficiency Comparison: GMM Versus GQL

421

9.2.3.1 Asymptotic Distribution of the GMM Estimator

421

9.2.3.2 Asymptotic Distribution of the GQL Estimator

422

9.2.3.3 Asymptotic Efficiency Comparison

422

9.2.3.4 Small Sample Efficiency Comparison: A Simulation Study

424

9.2.4 Fitting the Binary Dynamic Mixed Logit Model to the SLID data

425

9.2.5 GQL Versus Maximum Likelihood (ML) Estimation for BDML Model

427

9.2.5.1 ML Estimation

428

9.2.5.2 Relative Performances of the GQL and ML Approaches for BDML model: A Simulation Study

429

9.3 A Binary Dynamic Mixed Probit (BDMP) Model

431

9.3.1 GQL Estimation for BDMP Model

432

9.3.2 GQL Estimation Performance for BDMP Model: A Simulation Study

433

9.3.2.1 Random Effects Mis-specification: True t Versus Working Normal Distributions For Random Effects

434

Exercises

436

References

437

Chapter 10 Familial Longitudinal Models for Count Data

439

10.1 An Autocorrelation Class of Familial Longitudinal Models

439

10.1.1 Marginal Mean and Variance

440

10.1.1.1 Conditional Marginal Mean and Variance

440

10.1.1.1 Unconditional Marginal Mean and Variance

440

10.1.2 Nonstationary Autocorrelation Models

441

10.1.2.1 Conditional AR(1) Model

441

10.1.2.1.1. Unconditional Mean, Variance, and Correlation Structure

442

10.1.2.2 Conditional MA(1) Model

442

10.1.2.2.1. Unconditional Mean, Variance, and Correlation Structure

443

10.1.2.3 An Alternative Conditional MA(1) Model

443

10.1.2.3.1 Unconditional First and Second-Order Moments

444

10.1.2.4 Conditional EQC Model

444

10.1.2.4.1. Unconditional Mean, Variance, and Correlation Structure

445

10.2 Parameter Estimation

445

10.2.1 Estimation of Parameters Under Conditional AR(1) Model

446

10.2.1.1 GQL Estimation of Regression Parameter ß

446

10.2.1.2 GQL Estimation of Familial Correlation Index Parameter s².

447

10.2.1.2.1 GQL(I) Estimation of s².

449

10.2.1.2.2 GQL(N) Estimation of s².

451

10.2.1.3 Estimation of Longitudinal Correlation Index Parameter .

454

10.2.2 Performance of the GQL Approach: A Simulation Study

455

10.2.2.1 Simulation Study with p = 1 Covariate

455

10.2.2.2 Simulation Study with p = 2 Covariates

457

10.2.2.3 Effects of Partial Model Fitting: A Further Simulation Study with p = 2 Covariates

459

10.3 Analyzing Health Care Utilization Data by Using GLLMM

462

10.4 Some Remarks on Model Identification

465

10.4.1 An Exploratory Identification

466

10.4.2 A Further Improved Identification

467

Exercises

467

References

469

Chapter 11 Familial Longitudinal Models for Binary Data

471

11.1 LDCCP Models

472

11.1.1 Conditional-Conditional (CC) AR(1) Model

472

11.1.1.1 Conditional Mean, Variance, and Correlation Structure

472

11.1.1.2 Unconditional Mean, Variance, and Correlation Structure

473

11.1.2 CC MA(1) Model

474

11.1.3 CC EQC Model

475

11.1.4 Estimation of the AR(1) Model Parameters

476

11.1.4.1 GQL Estimation of Regression Parameter ß

476

11.1.4.2 GQL Estimation of Familial Correlation Index Parameter s².

478

11.1.4.3 Moment Estimation of Longitudinal Correlation Index Parameter .

483

11.2 Application toWaterloo Smoking Prevention Data

484

11.3 Family Based BDML Models for Binary Data

487

11.3.1 FBDML Model and Basic Properties

488

11.3.1.1 Conditional Mean, Variance, and Correlation Structures

488

11.3.1.2 Unconditional Mean, Variance, and Correlation Structures

489

11.3.2 Quasi-Likelihood Estimation in the Familial Longitudinal Setup

490

11.3.2.1 Joint GQL Estimation of Parameters

490

11.3.2.2 Asymptotic Covariance Matrix of the Joint GQL Estimator

494

11.3.3 Likelihood Based Estimation

495

11.3.3.1 Likelihood Function for the FBDML Model

495

11.3.3.2 Likelihood Estimating Equations

495

11.3.3.3 Asymptotic Covariance of the Joint ML Estimator

497

Exercises

499

References

503

Index

505