dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Superlattice to Nanoelectronics

Raphael Tsu

 

Verlag Elsevier Reference Monographs, 2010

ISBN 9780080968148 , 346 Seiten

2. Auflage

Format PDF, ePUB, OL

Kopierschutz DRM

Geräte

155,00 EUR

  • Analysis and Correctness of Algebraic Graph and Model Transformations
    Handbuch Hochtemperatur-Werkstofftechnik - Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und -beschichtungen
    Bosch Autoelektrik und Autoelektronik - Bordnetze, Sensoren und elektronische Systeme
    Sichtbeton-Mängel - Gutachterliche Einstufung, Mängelbeseitigung, Betoninstandsetzung und Betonkosmetik
    Handbuch der Baugrunderkennung - Geräte und Verfahren
    Handbuch der sozialwissenschaftlichen Datenanalyse
    RFID-Baulogistikleitstand - Forschungsbericht zum Projekt 'RFID-unterstütztes Steuerungs- und Dokumentationssystem für die erweiterte Baulogistik am Beispiel Baulogistikleitstand für die Baustelle'
    IntelliBau - Anwendbarkeit der RFID-Technologie im Bauwesen
  • Leitfaden für Bausachverständige - Rechtsgrundlagen - Gutachten - Haftung
    So funktioniert Mediation im Planen + Bauen - mit Fallbeispielen und Checklisten
    Baudichtstoffe - Erfolgreich Fugen abdichten
    Advances in Imaging and Electron Physics - Optics of Charged Particle Analyzers
    An Innovative 3D-CFD-Approach towards Virtual Development of Internal Combustion Engines
    Effiziente Rekonstruktion und alternative Spulentopologien für Magnetic-Particle-Imaging
    Lectures on Algebraic Geometry II - Basic Concepts, Coherent Cohomology, Curves and their Jacobians

     

     

 

 

Front Cover

1

Superlattice to Nanoelectronics

4

Copyright Page

5

Table of Contents

6

Preface

10

Introduction

14

Chapter 1 Superlattice

20

1.1 The Birth of the Man-Made Superlattice

20

1.2 A Model for the Creation of Man-Made Energy Bands

23

1.3 Transport Properties of a Superlattice

25

1.4 More Rigorous Derivation of the NDC

25

1.5 Response of a Time-Dependent Electric Field and Bloch Oscillation

29

1.6 NDC from the Hopping Model and Electric Field–Induced Localization

35

1.7 Experiments

46

1.8 Type-III Superlattice (Historically Type-II Superlattice)

52

1.9 Physical Realization and Characterization of a Superlattice

63

1.10 Summary

71

Chapter 2 Resonant Tunneling via Man-Made Quantum Well States

76

2.1 The Birth of Resonant Tunneling

76

2.2 Some Fundamentals

80

2.3 Conductance from the Tsu–Esaki Formula

85

2.4 Tunneling Time from the Time-Dependent Schrödinger Equation

86

2.5 Damping in Resonant Tunneling

95

2.6 Very Short l and w for an Amorphous QW

116

2.7 Self-Consistent Potential Correction of DBRT

118

2.8 Experimental Confirmation of Resonant Tunneling

122

2.9 Instability in RTD

123

2.10 Summary

130

Chapter 3 Optical Properties and Raman Scattering in Man-Made Quantum Systems

134

3.1 Optical Absorption in a Superlattice

134

3.2 Photoconductivity in a Superlattice

140

3.3 Raman Scattering in a Superlattice and QW

143

3.4 Summary

159

Chapter 4 Dielectric Function and Doping of a Superlattice

162

4.1 Dielectric Function of a Superlattice and a Quantum Well

162

4.2 Doping a Superlattice

166

4.3 Summary

170

Chapter 5 Quantum Step and Activation Energy

172

5.1 Optical Properties of Quantum Steps

172

5.2 Determination of Activation Energy in Quantum Wells

178

5.3 Summary

182

Chapter 6 Semiconductor Atomic Superlattice (SAS)

184

6.1 Silicon-Based Quantum Wells

185

6.2 Si-Interface Adsorbed Gas (IAG) Superlattice

186

6.3 Amorphous Silicon/Silicon Oxide Superlattice

189

6.4 Silicon–Oxygen (Si–O) Superlattice

190

6.5 Estimate of the Band-Edge Alignment Using Atomic States

195

6.6 Estimate of the Band-Edge Alignment with HOMO–LUMO

196

6.7 Estimation of Strain from a Ball-and-Stick Model

198

6.8 Electroluminescence and Photoluminescence

209

6.9 Transport through a Si–O Superlattice

214

6.10 A Si–O Superlattice and Other Si/Ge, Si/Co, Si/C Monolayer Superlattice

216

6.11 Summary

219

Chapter 7 Si Quantum Dots

222

7.1 Energy States of Silicon Quantum Dots

222

7.2 Resonant Tunneling in Silicon Quantum Dots

229

7.3 Slow Oscillations and Hysteresis

235

7.4 Avalanche Multiplication from Resonant Tunneling

243

7.5 Influence of Light and Repeatability under Multiple Scans

247

7.6 Many Body Effects in Coupled Quantum Dots

249

7.7 Summary

251

Chapter 8 Capacitance, Dielectric Constant, and Doping Quantum Dots

254

8.1 Capacitance of Silicon Quantum Dots

254

8.2 Dielectric Constant of a Silicon Quantum Dot

263

8.3 Doping a Silicon Quantum Dot

272

8.4 Capacitance: Spatial Symmetry of Discrete Charge Dielectric

277

8.5 Summary

281

Chapter 9 Porous Silicon

286

9.1 Porous Silicon: Light-Emitting Silicon

286

9.2 PSi: Other Applications

291

9.3 Summary

293

Chapter 10 Some Novel Devices

296

10.1 Field Emission with Quantum Well and Nanometer Thick Multilayer Structured Cathode

296

10.2 Saturation Intensity of PbS QDs

301

10.3 Multipole Electrode Heterojunction Hybrid Structures

305

10.4 Some Fundamental Issues: Mainly Difficulties

309

10.5 Comments on Quantum Computing

311

10.6 Recent Activities in Superlattice

312

10.7 Graphene Adventure

315

10.8 Summary

318

Chapter 11 Quantum Impedance of Electrons

324

11.1 Landauer Conductance Formula

324

11.2 Electron Quantum Waveguide

325

11.3 Wave Impedance of Electrons

329

11.4 Summary

338

Chapter 12 Why Super and Why Nano?

340

12.1 Finite Solid, Giant Molecule, and Composite

340

12.2 Generalization of Superlattices into Components

340

12.3 QDs as Individual Components

342

12.4 Size Requirements

342

12.5 Superlattice and the World of Nano

343

12.6 Some New Opportunities

344

12.7 A Word of Caution

345