dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Automotive Tribology

Jitendra Kumar Katiyar, Shantanu Bhattacharya, Vinay Kumar Patel, Vikram Kumar

 

Verlag Springer-Verlag, 2019

ISBN 9789811504341 , 342 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

149,79 EUR


 

Preface

6

Contents

9

About the Editors

11

General

14

1 Introduction of Automotive Tribology

15

1.1 Introduction

15

1.1.1 Friction

16

1.1.2 Wear

16

1.1.3 Lubrication

17

1.1.4 Factors Which Affect the Tribological Performance

18

1.1.5 Application of Tribology

19

References

24

New Materials for Automotive Applications

26

2 Tribological Aspects of Automotive Engines

27

2.1 Introduction

27

2.2 Automotive Engine Tribology

29

2.2.1 Engine

29

2.2.2 Engine Lubrication Regimes and Wear Calculations

29

2.2.3 Piston Ring Assembly

30

2.2.4 Engine Bearing

31

2.2.5 Valve-Train

32

2.2.6 Cam Follower

32

2.3 Transmission and Drive Line Tribology

33

2.3.1 Transmission Line

33

2.3.2 Traction Drive Components

33

2.3.3 Wheel Bearing

34

2.3.4 Drive Chain

34

2.4 Trends in Automotive Engine Tribology

34

2.4.1 New Material Development

34

2.4.2 Development of Nano-tribology

35

2.5 Trends in Automotive Lubricants

35

2.5.1 Engine Lubricants

35

2.5.2 Gear Lubricants

36

2.5.3 Axle Lubricants

36

2.5.4 Solid Lubricants

36

2.6 Summary

37

References

37

3 The Potential of Natural Fibers for Automotive Sector

40

3.1 Introduction

41

3.2 Applications of Natural Fibre-Reinforced Polymer Composites (NFRC)

43

3.3 Advantages of Natural Fibre-Reinforced Polymer Composites

43

3.4 Disadvantages of Natural Fibre-Reinforced Polymer Composites

44

3.5 Classification of Natural Fibres

44

3.6 Mechanical Testing of Natural-Fibre Composites

45

3.6.1 Tensile Strength of Composite

45

3.6.2 Elongation at Break (%)

47

3.6.3 Impact Strength

47

3.6.4 Flexural Strength

48

3.6.5 Stiffness

48

3.6.6 Dynamic Mechanical Analysis

49

3.7 Applications in the Automobile Sector

50

3.7.1 Interior Components

50

3.7.2 Exterior Components

55

3.8 Limitations

55

3.9 Conclusions

55

References

56

4 Future of Metal Foam Materials in Automotive Industry

59

4.1 Introduction

60

4.2 Production Methods of Close Cell Metal Foams

61

4.2.1 Blowing Agent Techniques

62

4.2.2 Powder Metallurgy Technique (Trade Name—Alulight)

62

4.2.3 Melt Route Method (Trade Name—Alporas)

63

4.2.4 Foaming by Gas Injection (Trade Name—Alcan or Cymat)

64

4.3 Properties of Some of the Commercially Available Al Foams

65

4.4 Applications and Commercialization of Close-Cell Metal Foam

66

4.4.1 Light Weight Construction and Energy Absorption Applications

67

4.4.2 Light Weight Construction with Damping Insulation

68

4.4.3 Multi-functional Application

68

4.5 Conclusion

69

References

69

5 Study of Tribo-Performance and Application of Polymer Composite

72

5.1 Introduction

72

5.2 Tribology

73

5.2.1 Tribo-Testing Machines

76

5.3 Tribological Properties of Polymer

76

5.4 Tribological Properties of Fibre Reinforced Polymer Composite Materials

82

5.4.1 Glass Fibre Composite

84

5.4.2 Carbon Fibre Composite

85

5.4.3 Natural Fibre Composite

91

5.5 Tribological Application of Composite Materials

91

5.5.1 Gears

94

5.5.2 Brake Pads

95

5.5.3 Springs

97

5.6 Conclusions

98

5.7 Future Works

101

References

101

6 Mechanical and Erosion Characteristics of Natural Fiber Reinforced Polymer Composite: Effect of Filler Size

107

6.1 Introduction

108

6.2 Types of Natural Fibers

109

6.2.1 Composite Fabrication Techniques

110

6.2.2 Particle Size Distribution of Mill Scale

112

6.2.3 Mechanical Characterization

112

6.3 Erosion Behavior of NFRP Composites

115

6.3.1 Air Jet Erosion Test Rig

115

6.3.2 Effect of Impingement Angle on Erosion Rate with Varying Mill Scale Size in Composites

116

6.3.3 Effect of Impact Velocity on Erosion Rate with Varying Mill Scale Size in Composites

118

6.3.4 Effect of Environment Temperature on Erosion Rate with Varying Mill Scale Size in Composites

119

6.4 Conclusion

119

References

120

7 Erosive Wear Behaviour of Carbon Fiber/Silicon Nitride Polymer Composite for Automotive Application

123

7.1 Introduction

124

7.2 Materials and Methods

125

7.2.1 Composite Fabrication

125

7.2.2 Solid Particle Erosion

128

7.3 Result and Discussion

128

7.4 Conclusion

133

References

133

8 Effects of Reinforcement on Tribological Behaviour of Aluminium Matrix Composites

136

8.1 Introduction

136

8.2 Reinforcement Particle in AMC

137

8.3 Techniques of Manufacturing AMCs

138

8.3.1 Squeeze Casting

139

8.3.2 Compocasting

140

8.3.3 Stir Casting

140

8.4 Tribology of AMCs

141

8.5 Mechanical Properties of AMCs

144

8.6 Applications of AMCs

145

8.7 Conclusion

146

References

146

New Lubricants for Automotive Applications

149

9 Current and Future Trends in Grease Lubrication

150

9.1 Introduction

151

9.1.1 Background

151

9.1.2 Overview of Lubricants

151

9.2 Grease

152

9.3 Grease Composition

153

9.3.1 Base Oil

153

9.3.2 Thickener

156

9.3.3 Additives

157

9.4 General Method for Grease Synthesis

158

9.5 Test Methods

159

9.5.1 Physical Property Testing

159

9.5.2 Tribological Performance Testing

164

9.6 Grease Specification for Automotive Industry

167

9.7 Grease Lubrication Mechanism

167

9.8 Grease Tribology

171

9.9 Compatibility of Greases

180

9.10 Application of Grease

180

9.11 Summary

181

References

182

10 Lubrication Effectiveness and Sustainability of Solid/Liquid Additives in Automotive Tribology

186

10.1 Introduction

186

10.1.1 Preparation Method of Lubricants/Vapor Deposition

187

10.1.2 Physical Properties of Steel and Ball-on-Disk Test Procedure

188

10.1.3 Theory of Sliding Friction and Wear

189

10.1.4 Tribological Investigation

190

10.1.5 Influencing Wear Parameters

193

10.1.6 Conclusions and Future Directions

197

References

198

11 Potential of Bio-lubricants in Automotive Tribology

200

11.1 Introduction

200

11.2 Lubrication and Lubricants

202

11.3 Bio-lubricants

203

11.3.1 Bio-lubricant Properties

204

11.3.2 Biodegradability

207

11.3.3 Merits and Demerits of Bio-lubricant

208

11.3.4 Bio-lubricants in Automotive Tribology

209

11.4 Conclusion

214

References

214

Surface Morphologies for Automotive Applications

218

12 Influence of Surface Texturing on Friction and Wear

219

12.1 Introduction

220

12.2 Texturing on Tribo Surface Using Milling Operation

224

12.3 Investigating the Tribological Properties Using Pin-on-Disc Tribometer

226

12.4 Understanding the Mechanisms Involved During Tribo Tests

231

12.4.1 Lubricant Reservoirs Leading to Friction Reduction

231

12.4.2 Presence of Third Bodies in the Dimples (Dry Condition)

232

12.4.3 Increase in COF with the Increase in Load and Texture Density

232

12.4.4 Understanding the Severity of the Wear on the Counter Surface Against the Textured Surface

233

12.5 Conclusion

235

References

235

13 Magneto Rheological Fluid Based Smart Automobile Brake and Clutch Systems

238

13.1 Introduction

238

13.1.1 Constituents of Magneto Rheological Fluid

239

13.1.2 Operational Mode for Magnetorheological Fluid

243

13.2 Need for Magneto Rheological Fluid

244

13.3 Mathematical Modelling

245

13.3.1 Magnetic Properties of Suspended Particles

245

13.3.2 Viscous Incompressible Flow with Pressure Gradient

246

13.3.3 Magneto Rheological Fluid Models

248

13.4 Magneto Rheological Fluid

255

13.4.1 Synthesis and Characterization

256

13.5 Sedimentation Test

257

13.6 Applications of MR Fluid

258

13.6.1 Magneto-Rheological Brake and Clutch System

259

13.7 Classification of MR Fluid Based Braking System

261

13.7.1 Drum Brake

261

13.7.2 Inverted Drum Brake

262

13.7.3 T-Shaped Rotor Brake

263

13.7.4 Disk Type Brake

264

13.7.5 Multiple Disk Brake

265

13.8 Summary

266

References

266

14 Shot Peening Effects on Abrasive Wear Behavior of Medium Carbon Steel

270

14.1 Introduction

270

14.2 Experimental Details

273

14.2.1 Specimen Preparation for Shot Peening

273

14.2.2 Shot Peening

273

14.2.3 Abrasive Wear Test

275

14.2.4 Micro-hardness Measurements

277

14.3 Results and Discussion

277

14.3.1 Materials and Microstructure

277

14.3.2 Microstructure After Shot Peening

278

14.3.3 Micro Hardness

279

14.3.4 Wear Behaviour

280

14.4 Conclusion

284

References

285

15 Tribological Performance of Surface Textured Automotive Components: A Review

287

15.1 Introduction

288

15.2 Texture Design

289

15.2.1 Texture Geometry

289

15.2.2 Texture Position

295

15.3 Surface Texturing in Automotive Components

297

15.3.1 Cylinder Liner

298

15.3.2 Wet Clutch

298

15.3.3 Piston Ring

299

15.3.4 Engine Bearings

299

15.4 Texture Fabrication Techniques

300

15.5 Concluding Remarks

302

References

302

16 Applications of Tribology on Engine Performance

307

16.1 Introduction

308

16.2 Automotive Tribology and Its Importance

308

16.3 Components of IC Engine Subjected to Friction and Wear

309

16.3.1 Piston Rings

310

16.3.2 Journal Bearings

312

16.3.3 Valve Train

313

16.4 Tribological Improvements of IC Engine

315

16.4.1 Engine Friction Reduction

316

16.4.2 Hybridization and Engine Downsizing

320

16.4.3 New Combustion Concepts

321

16.5 Summary

322

References

323

17 Asbestos Free Braking Pads by Using Organic Fiber Based Reinforced Composites for Automotive Industries

326

17.1 Introduction

327

17.2 Literature Review

328

17.2.1 Organic Fiber as Reinforcing Material for Braking Pads

328

17.2.2 Organic Filler as Reinforcing Material for Braking Pads

329

17.3 Experimental Procedure

330

17.3.1 Seashell

330

17.3.2 Periwinkle Shell

330

17.3.3 Palm Kernel Fiber

330

17.3.4 Banana Peels

330

17.3.5 Sisal Fibers

331

17.4 Preparation and Characterization of the Brake Pad Composites

331

17.4.1 Organic Fibers

332

17.4.2 Organic Fillers

335

17.5 Friction, Wear Behavior, and Mechanisms of Organic Fiber Reinforced Brake Friction Materials

338

17.6 Current Challenges and Future Research Direction in Brake Pad Composites

339

17.7 Conclusion

340

References

340