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Supervisor’s Foreword

The interaction of strong laser pulses with atoms and molecules has been subject of
scientific interest for decades. A large manifold of interesting phenomena arise from
the quantum nature of the systems, their strong modification by the laser electric
field and—after ionization—from the acceleration of the freed electrons in the laser
field. Beside computationally highly demanding quantum calculations, various
theoretical models have been developed that are able to approximately describe the
dynamics in many cases.

In order to gain insight into the details of the processes and to refine and adapt
the existing models accordingly, precise measurements have to be performed and
suitable experimental setups are requested. The detection of all charged particles
created in a certain process and the precise determination of their three-dimensional
momentum vectors became possible with the invention of the Reaction Microscope.
These spectrometers provide a very high resolution and are capable of performing
true multi-particle coincidence measurements on a shot-to-shot basis with very low
background. Data selection according to, e.g., the masses and charge states of the
created ions or the kinetic energy released in a process can yield channel-selective
data and thus helps to answer the open questions in the field.

An atom exposed to a very strong laser field typically experiences a large
deformation of the binding Coulomb potential. As a consequence, a potential
barrier is formed where electrons may tunnel out. Thus, a very fundamental
quantum process is triggered by the laser pulse. In order to relate the experimental
observable—the final momentum of the electron—to the process and its dynamics,
the further interaction of the freed electron with the laser field has to be taken into
account: In the vicinity of its parent ion, the electron is driven back and forth by the
laser. Depending on the laser electric field at the moment of ionization and the
initial momentum the electron had right after tunneling, a certain trajectory and final
momentum results. Theoretical models suggest that the initial momentum distri-
bution of the freed electrons depends on the shape of their bound state wave
function prior to the tunneling process. Although used in many theoretical and
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experimental works, this dependence has never been shown directly in any
experiment before.

In this thesis, ionization processes of rare gas atoms and hydrogen molecules are
experimentally investigated. Using few-cycle laser pulses in a pump-probe scheme
and argon as target, the dependence of the final electron momentum distribution on
the bound state wave function is directly proven. Highly resolved electron
momentum distributions are obtained for rare gas atoms and molecular hydrogen
along the transition from the multiphoton to the tunneling regime, using laser pulses
over a large range of wavelengths. Unique fingerprints of autoionizing Rydberg
states in argon and krypton are identified. For hydrogen, different reaction channels
in terms of ionization and dissociation of the molecule are isolated using the unique
features of the Reaction Microscope. This provides a set of channel-resolved
benchmark data for future theoretical calculations and models.

Heidelberg, Germany Priv.-Doz. Dr. Robert Moshammer
January 2016
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Abstract

In this thesis, the ionization of atoms and small molecules in strong laser fields is
experimentally studied by utilization of a reaction microscope.

The fundamental process of tunnel ionization in strong laser fields is subject of
investigation in a pump-probe experiment with ultrashort laser pulses. A coherent
superposition of electronic states in singly charged argon ions is created within the
first, and subsequently tunnel-ionized with the second pulse. This gives access to
state-selective information about the tunneling process and allows to test common
models.

Moreover, the ionization of krypton and argon at different wavelengths is
studied, from the multiphoton to the tunneling regime. The population of
autoionizing doubly excited states in the laser fields is proven and a possible
connection to the well-known dielectronic recombination processes is discussed.
The wavelength-dependent investigations are furthermore extended to molecular
hydrogen. In addition to ionization, this system might undergo different dissociative
processes. Channel-selective electron momentum distributions are presented and
compared to each other.
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Chapter 1
Introduction

The wave-character of light and the particle-character of matter seemed disparate
until the last century, when physics proved the opposite: Light and matter may like-
wise be described as particles and waves, a fact commonly known as wave-particle
duality and also valid for larger,massive objects [11].Despite this commonground, in
everyday life as well as inmost experiments, light andmatter act completely different
and can be distinguished well by their diverse properties. This was also emphasized
in the 2012 Nobel Prize in Physics press release: “David Wineland traps electrically
charged atoms, or ions, controlling and measuring themwith light, or photons. Serge
Haroche takes the opposite approach: he controls and measures trapped photons, or
particles of light, by sending atoms through a trap. Both Laureates work in the field
of quantum optics studying the fundamental interaction between light and matter, a
field which has seen considerable progress since the mid-1980s.” [16].

Indeed, nowadays, the interaction of light andmatter is the subject of investigation
in a large variety of experiments. Decisive for the development of the field was the
invention of the laser1 [9]. The unique properties of laser light, for example its
spectral narrowness, are in fact mandatory for many experiments and exploited in a
manifold of different techniques from laser cooling of atoms [15] to high resolution
spectroscopy [13].

Despite the scientific potential comprised in the interaction processes, their math-
ematical treatment is—at first glance—fairly simple and often relies on quantum
mechanical perturbation theory. In fact, the interaction of monochromatic light with
an atom is one of the basic examples of such approach in undergraduate textbooks.
The approach uses the fact that the electric field associated with the light is small
compared to the electric field that keeps the electrons bound.

In laboratories, this condition is often, but not always fulfilled. Remarkably soon
after the invention of the laser itself, techniques were invented allowing the temporal
confinement of the emitted laser radiation and thus the creation of “giant” light
pulses [10]. Additional spatial confinement by focussing these pulses onto a target

1Light amplification by stimulated emission of radiation.
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soon provided intensities with corresponding electric fields that were equal to or
even exceeded the atomic fields. It is no surprise that a perturbative treatment of the
interaction between the laser field and an atom breaks down in this situation, and the
seemingly simple task to describe the problem becomes tremendously complicated.

Although quantum mechanics provides the appropriate equation to describe the
problem, the time-dependent Schrödinger equation, finding its full numerical solu-
tion is—even with today’s fastest computers—only possible for very specific, fairly
simple problems. In addition, if such a solution is found, the calculation usually
only returns a final result rather than an intuitive picture of the underlying processes.
However, those simple pictures are desirable since they often help to predict and
understand important aspects of the light-matter interactions.

In 1965, Keldysh investigated the ionization process in strong electromagnetic
fields using an alternative approach of treating the laser field classically [7]. In this
work, the area of strong-field physics was divided into two regimes, a separation
which still persists. One side, commonly known as the multiphoton regime, is asso-
ciated with rather low intensities and/or short wavelengths. Here, the binding energy
of the electron is large compared to the ponderomotive energy, the cycle-averaged
kinetic energy of a free electron in the laser field. The opposite is the case for high
intensities and/or long wavelengths in the tunneling regime. As suggested by the
names, the characteristics of the ionization process can be described most appro-
priately either by the absorption of several photons or a tunneling process of the
electron, respectively.

Since then, much effort has been spent to refine and extend the classical treatment
of the interaction. In the tunneling regime, the interaction between the laser and the
electron after the tunneling process turned out to be extremely important for under-
standing the strongly enhanced rates for double and multiple ionization obtained in
moderately intense laser fields [8]. Usually, the full treatment still involves quantum
mechanical tunneling as a first step and a subsequent classical treatment of the freed
electron which resembles a fairly good approximation. Due to this combination of
quantum mechanics and classical physics, the approaches are commonly referred to
as “semi-classical models”. Important milestones are the ADK theory, e.g. [1, 12,
14], and the extension to three steps in the three-step model [3] that also considers
the possible recollision of the electron with its parent ion. It is this recollision which
gives rise to the enhanced rates for double and multiple ionization as well as to other
interesting phenomena, such as the generation of highly energetic radiation and the
formation of extremely short light pulses with durations of down to 100 as2 and
below [17].

Despite the progress, many questions remain. One of them is related to the region
“in between” the two regimes, in which neither the tunneling nor the multiphoton
picture seems to be valid and where, in fact, most of the experiments are carried out.
When coming from the tunneling regime and approaching shorter wavelengths and
thus faster and faster oscillation of the field, onemay ask, up to which point tunneling

2One attosecond (as) equals 10−18 s.
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canbe treated adiabatically, henceneglecting the temporal variationof thefield during
the process. This question is still controversially discussed [2, 6]. Another question is
related to themomentumdistribution of the electrons right after the tunneling process,
before being accelerated by the laser field. Although different models predict certain
momentum distributions, their explicit experimental validation is pending.

However, promising new experimental techniques such as the attoclock technique
[5], provide an astonishing level of detail on information about the process of tunnel
ionization. For example, few tens of attoseconds were experimentally found as an
upper limit for the tunneling time—the time the electron needs to tunnel out—in
helium [4]. Similar to conventional streaking techniques, the temporal information
is mapped onto spatial coordinates. For each time of ionization, associated coordi-
nates can be calculated and the experimental data are interpreted with the reversed
relation. These calculations require detailed knowledge about the initial momenta
of the electrons which is—as described above—currently only available in terms of
theoretical predictions frommodels. One of the aims of this work is to experimentally
test these models.

In this thesis, the ionization of atoms and small molecules in strong laser fields
is experimentally investigated by utilization of a highly advanced momentum spec-
trometer: the reaction microscope. Chapter 2 gives a brief overview about the math-
ematical description of ultrashort, strong laser pulses and their technical creation.
Furthermore, the specific laser system and the pulsemanipulation techniques utilized
throughout this work are described. Following this, Chap.3 focusses on the interac-
tion of intense laser pulses with matter, in particular on the description of ionization
processes in atoms andmolecules. The reactionmicroscope and its working principle
is treated in Chap.4.

Afterwards, the experimental results are presented, divided into three parts. In the
first, Chap. 5, common theoretical models about the electron momentum distribu-
tion directly after the tunneling process are explicitly tested. This is done by using
ultrashort pulses in a pump-probe scheme and a coherent superposition of electronic
states in singly ionized argon as initial state for further tunnel ionization.

The subject of the second experimental part, presented inChap.6, is the interaction
of strong laser pulses of different wavelengths with noble gas atoms, namely krypton
and argon. Tuning the wavelength by utilizing an optical parametric amplifier and
nonlinear crystals for frequency mixing enables the observation of characteristic
changes in the electron momentum distributions and the ionization process while
approaching the tunneling regime. Furthermore, the excitation of doubly-excited
states of the atoms is proven and investigated.

In the last part, presented in Chap.7, a similar investigation is performed for
the most simple molecule existing, H2. In addition to pure ionization, this system
features different dissociation channels. The reaction microscope enables their sepa-
ration and thus offers channel-selected electron momentum distributions at different
wavelengths. The results of all experiments presented in this thesis are summarized
in Chap.8, where future perspectives are also discussed.
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