Related Titles

Mozzi, F., Raya, R.R., Vignolo, G.M. (eds.)

Biotechnology of Lactic Acid Bacteria – Novel Applications 2e

2nd Edition
2015
Print ISBN: 978-1-118-86840-9

Gupta, V.K., Mach, R., Sreenivasaprasad, S. (eds.)

Fungal Biomolecules - Sources, Applications and Recent Developments

2015

Cyanobacteria - An Economic Perspective

2013

Love, J. Ch. (ed.)

Micro- and Nanosystems for Biotechnology

2016
Print ISBN: 978-3-527-33281-6

Coming soon:

Yoshida, T. (ed.)

Applied Bioengineering

2017
Print ISBN: 978-3-527-34075-0

Wittmann, Ch., and Liao, J.C. (eds.)

Industrial Biotechnology

Products and Processes

2017
Print ISBN: 978-3-527-34181-8

Planned:

Systems Biology

J. Nielsen & S. Hohmann (Chalmers University, Sweden)

2017
Print ISBN: 9783527335589

Emerging Areas in Bioengineering

H. N. Chang (KAIST, South Korea)

2017
Print ISBN: 9783527340880
Industrial Biotechnology

Microorganisms

Volume 1
To Heike, Isabelle, Felix, and Florian, with thanks from Christoph for their love, support, and inspiration.

To Kelly, Carol, and Clara, with thanks from Jim.
Contents to Volume 1

List of Contributors XVII
About the Series Editors XXIX
Preface XXXI

Part I Industrial Biotechnology: From Pioneers to Visionary 1

1 History of Industrial Biotechnology 3
Arnold L. Demain, Erick J. Vandamme, John Collins, and Klaus Buchholz
1.1 The Beginning of Industrial Microbiology 3
1.2 Primary Metabolites and Enzymes 7
1.2.1 Birth, Rise, and Decline of the Term “Biotechnology” in the Period 1900–1940 7
1.2.2 Influential Scholars Boosting Industrial Fermentation from 1900 to 1940 8
1.2.3 Milestone Achievements in Industrial Fermentation Technology 10
1.2.3.1 The Acetone–Butanol–Ethanol (ABE) Fermentation Process 10
1.2.3.2 A Novel Vitamin C Fermentation Process 11
1.2.3.3 The Lactic Acid Fermentation Process 11
1.2.3.4 Fermentative Production of Glycerol 12
1.2.3.5 l-(-)-Ephedrine by Fermentation 12
1.2.3.6 Steroid Transformations 13
1.2.3.7 The Citric Acid Fermentation Process 13
1.2.3.8 Gluconic Acid Process 13
1.2.3.9 Other Important Fermentation Processes and Products 14
1.2.3.10 Applied Biocatalysis and Industrial Enzymes 14
1.3 The Antibiotic Era 16
1.3.1 Penicillin 16
1.3.2 The Cephalosporins 20
1.3.3 The Waksman Era 23
1.3.4 Mutagenesis and Strain Improvement 24
1.3.5 Semisynthetic Antibiotics to Combat Resistant Microbes 26
1.4 The Biotechnology Era Between 1970 and 2015 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1 Biotechnology in the 1960s and 1970s; Governmental and Political</td>
<td>27</td>
</tr>
<tr>
<td>1.4.2 The Development of New Biotechnology Companies</td>
<td>29</td>
</tr>
<tr>
<td>1.4.3 New Bioengineering Tools</td>
<td>35</td>
</tr>
<tr>
<td>1.4.4 Products</td>
<td>39</td>
</tr>
<tr>
<td>1.4.4.1 Food, Feed, Industrial Commodities, and Specialties</td>
<td>39</td>
</tr>
<tr>
<td>1.4.4.2 Biopharmaceuticals</td>
<td>43</td>
</tr>
<tr>
<td>1.4.4.3 Plant Products, Seeds</td>
<td>46</td>
</tr>
<tr>
<td>1.4.5 Further Aspects</td>
<td>47</td>
</tr>
<tr>
<td>1.4.5.1 Scientific Status</td>
<td>47</td>
</tr>
<tr>
<td>1.4.5.2 Political, Institutional, and Socioeconomic Conditions</td>
<td>47</td>
</tr>
<tr>
<td>1.4.5.3 Economic Studies</td>
<td>47</td>
</tr>
<tr>
<td>1.4.5.4 Science Studies</td>
<td>48</td>
</tr>
<tr>
<td>1.4.6 How Pioneering Developments Led to Genetic Engineering</td>
<td>48</td>
</tr>
<tr>
<td>1.5.1 Preamble: People and Principles in Developing Enabling Technologies</td>
<td>48</td>
</tr>
<tr>
<td>1.5.2 Academic Freedom and Patenting: Hindrance to Science or Lever for Innovation?</td>
<td>49</td>
</tr>
<tr>
<td>1.5.3 Conceptual Leaps and Jumps</td>
<td>50</td>
</tr>
<tr>
<td>1.5.4 Surprise Discoveries Initiate Novel Areas/Methods of Research</td>
<td>51</td>
</tr>
<tr>
<td>1.5.5 Methodology Without Which Gene Technology Would Not Have Been Possible</td>
<td>52</td>
</tr>
<tr>
<td>1.5.5.1 Centrifugation: Preparation of Molecules of Different Sizes, Shapes, and/or Densities: Velocity Gradient Centrifugation</td>
<td>53</td>
</tr>
<tr>
<td>1.5.5.2 X-ray Crystallography: Understanding Molecular Structure at the Atomic Level</td>
<td>54</td>
</tr>
<tr>
<td>1.5.5.3 Chromatography with Solvent Motion or Electric Charge: Detection of Mutant Gene Products</td>
<td>55</td>
</tr>
<tr>
<td>1.5.5.4 Protein Sequencing</td>
<td>55</td>
</tr>
<tr>
<td>1.5.5.5 Nucleic Acid Sequencing - the Prelude: Phage + Bacterial Genetics and Biochemistry, the Gene Concept</td>
<td>56</td>
</tr>
<tr>
<td>1.5.6 DNA: Its Transfer to and Selection in Living Cells</td>
<td>59</td>
</tr>
<tr>
<td>1.5.7 Gene Cloning (1971 – 1982) the Era of Modern Biotechnology Based on Molecular Biology Begins</td>
<td>60</td>
</tr>
<tr>
<td>1.5.7.1 A Prerequisite for Cloning: Nucleic Acid, Biochemistry, and Enzymology</td>
<td>60</td>
</tr>
<tr>
<td>1.5.7.2 Applying Known Methods or a Conceptual Jump: the Details</td>
<td>61</td>
</tr>
<tr>
<td>1.5.8 Genome Mapping: Clone Libraries, Restriction Maps, and RFLPs</td>
<td>64</td>
</tr>
<tr>
<td>1.5.8.1 Prelude: Human Genetics before Genome Sequencing</td>
<td>64</td>
</tr>
<tr>
<td>1.5.8.2 Important Ideas on Gene Mapping in the DNA Age</td>
<td>64</td>
</tr>
<tr>
<td>1.5.8.3 DNA Hybridization Chip Sequencing and More</td>
<td>69</td>
</tr>
<tr>
<td>1.5.8.4 Mega Sequencing: Impact on Biotechnology</td>
<td>69</td>
</tr>
</tbody>
</table>
1.5.9 Expressing Genes in Other Organisms: Transgenic Animals Carrying rDNA
1.5.10 Future Trends
References

2 Synthetic Biology: An Emerging Approach for Strain Engineering
Jie Sun and Hal Alper
2.1 Introduction
2.2 Basic Elements
2.2.1 Gene Synthesis
2.2.2 Transcriptional Control
2.2.2.1 Promoter Engineering
2.2.2.2 Optimization of Gene Expression Vectors
2.3 Functional and Robust Modules
2.3.1 Synthetic Pathway Modules
2.3.1.1 Pathway Assembly Tools
2.3.1.2 Pathway Metabolic Flux Optimization Approaches
2.3.2 Synthetic Circuit Modules
2.3.2.1 Examples of Synthetic Circuits
2.3.2.2 Synthetic Circuit Design
2.3.2.3 Next-Generation Synthetic Circuits
2.4 Microbial Communities
2.5 Conclusions and Future Prospects
Acknowledgments
References

3 Toward Genome-Scale Metabolic Pathway Analysis
Jürgen Zanghellini, Matthias P. Gerstl, Michael Hanscho, Govind Nair, Georg Regensburger, Stefan Müller, and Christian Jungreuthmayer
3.1 Introduction
3.2 DD Method
3.3 Calculating Short EFM s in Genome-Scale Metabolic Networks
3.4 Conclusions
Acknowledgments
References

4 Cell-Free Synthetic Systems for Metabolic Engineering and Biosynthetic Pathway Prototyping
Ashty S. Karim, Quentin M. Dudley, and Michael C. Jewett
4.1 Introduction
4.2 Background
4.2.1 Purified Enzyme Systems
4.2.2 Crude Cell Lysate Systems
4.3 The Benefits of Cell-Free Systems
4.3.1 Purified Enzyme Systems 130
4.3.2 Crude Cell Lysate Systems 133
4.3.3 Variations of Cell-Free Systems 134
4.4 Challenges and Opportunities in Cell-Free Systems 135
4.4.1 Purification 136
4.4.2 Spatial Organization 137
4.4.3 Cell-Free System Stability 138
4.4.4 Modeling 139
4.5 Recent Advances 140
4.6 Summary 141
Acknowledgments 141
References 142

Part II Multipurpose Bacterial Cell Factories 149

5 Industrial Biotechnology: Escherichia coli as a Host 151
Matthew Theisen and James C. Liao
5.1 Introduction 151
5.1.1 Background 151
5.1.2 Historical Context 152
5.2 E. coli Products 152
5.2.1 Amino Acids 152
5.2.2 Organic Acids 156
5.2.3 Alcohols 157
5.2.4 Diols 159
5.2.5 Hydrogen and Alkanes 160
5.2.6 Fatty Acids 160
5.2.7 Sugar Alcohols 161
5.2.8 Isoprenoids 161
5.2.9 Polymers 162
5.2.10 Natural Products 163
5.2.11 Protein as Product 164
5.3 Rewiring Central Metabolism 165
5.3.1 NOG and Carbon Efficiency 165
5.3.2 Methanol and CO₂ Utilization 165
5.3.3 Advancing Analytical Techniques 166
5.4 Alternative Carbon Sources 167
5.4.1 Complex Carbohydrates 167
5.4.2 Glycerol 168
5.4.3 Protein to Fuel 169
5.5 E. coli Techniques and Concerns 169
5.5.1 Genetic Manipulation 169
5.5.2 Phage Contamination 169
5.6 Conclusions 170
References 171
6 Industrial Microorganisms: Corynebacterium glutamicum 183
 Judith Becker and Christoph Wittmann
 6.1 Introduction 183
 6.2 Physiology and Metabolism 185
 6.2.1 Substrate Assimilation, Catabolic Pathways, and Gluconeogenesis 186
 6.2.2 Tricarboxylic Acid Cycle and Glyoxylate Shunt 187
 6.2.3 Reactions of the Pyruvate Node 189
 6.2.4 Anabolism 192
 6.3 Genetic Manipulation of Corynebacterium glutamicum 192
 6.3.1 Plasmids 192
 6.3.2 Transformation Methods 194
 6.3.3 Engineering Gene Expression 195
 6.4 Systems Biology of Corynebacterium glutamicum 196
 6.4.1 Genome Analysis 196
 6.4.2 Transcriptome Analysis 197
 6.4.3 Proteome Analysis 198
 6.4.4 Metabolome Analysis 198
 6.4.5 Fluxome Analysis 199
 6.5 Application in Biotechnology 200
 6.5.1 Wild-Type Producers and Classical Mutants 200
 6.5.2 Top-Selling Amino Acids 200
 6.5.2.1 Glutamate Biosynthesis 201
 6.5.2.2 L-Lysine Biosynthesis 201
 6.5.3 Tailored Strains by Recombinant DNA Technology 202
 6.6 Conclusions and Perspectives 202

References 203

7 Host Organisms: Bacillus subtilis 221
 Hans-Peter Hohmann, Jan M. van Dijl, Laxmi Krishnappa, and Zoltán Prágai
 7.1 Introduction and Scope 221
 7.2 Identification of Genetic Traits Pertinent to Enhanced Biosynthesis of a Value Product 222
 7.3 Traits to Be Engineered for Enhanced Synthesis and Secretion of Proteinaceous Products 225
 7.3.1 Signal Peptides and Signal Peptidases 225
 7.3.2 Protein Transport Pathways 226
 7.3.2.1 The Sec Pathway 226
 7.3.2.2 The Tat Pathway 228
 7.3.2.3 Extracellular and Membrane-Bound Proteases of B. subtilis 229
 7.4 Engineering of Genetic Traits in Bacillus subtilis 231
 7.4.1 Natural Competence and Double Crossover Integration 232
 7.4.2 Tools to Modify Protein Expression Levels in B. subtilis Production Strains 233
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.2.1 Promoters of Various Strength for Customized mRNA Synthesis</td>
<td>233</td>
</tr>
<tr>
<td>7.4.2.2 Gene Amplification and Plasmid Vectors</td>
<td>234</td>
</tr>
<tr>
<td>7.4.2.3 mRNA-Stabilizing Elements and Transcriptional Terminators</td>
<td>234</td>
</tr>
<tr>
<td>7.4.2.4 RBS Elements</td>
<td>235</td>
</tr>
<tr>
<td>7.4.2.5 Signal Peptides</td>
<td>236</td>
</tr>
<tr>
<td>7.4.3 Modification of the Amino Acid Sequence of an Enzyme</td>
<td>237</td>
</tr>
<tr>
<td>7.4.4 Transforming DNA Constructs Obtained by Template-Free Synthesis</td>
<td>237</td>
</tr>
<tr>
<td>7.4.5 Production Strains Devoid of Antibiotic Resistance Markers</td>
<td>238</td>
</tr>
<tr>
<td>7.4.5.1 Chromosomal Modification with Transiently Employed Selection</td>
<td>238</td>
</tr>
<tr>
<td>7.4.5.2 Counterselection Strategies to Force the Deletion of Dominant</td>
<td>239</td>
</tr>
<tr>
<td>7.4.5.3 Removal of the Selection Marker by Cre/loxP Site-Specific</td>
<td>240</td>
</tr>
<tr>
<td>7.4.5.4 Recombineering</td>
<td>241</td>
</tr>
<tr>
<td>7.4.6 Introduction of Exogenous DNA into Bacillus Strains Incapable of</td>
<td>242</td>
</tr>
<tr>
<td>Developing Natural Competence</td>
<td></td>
</tr>
<tr>
<td>7.4.6.1 Phage Transduction</td>
<td>242</td>
</tr>
<tr>
<td>7.4.6.2 Protoplast Transformation and Protoplast Fusion</td>
<td>243</td>
</tr>
<tr>
<td>7.4.6.3 Electrotransformation</td>
<td>243</td>
</tr>
<tr>
<td>7.4.7 Lysed Protoplast Transformation</td>
<td>244</td>
</tr>
<tr>
<td>7.5 Genome Reduction</td>
<td>245</td>
</tr>
<tr>
<td>7.6 Significance of Classical Strain Improvement in Times of Synthetic</td>
<td>247</td>
</tr>
<tr>
<td>7.6.1 Generation of Genetic Diversity in Random Fashion</td>
<td>248</td>
</tr>
<tr>
<td>7.6.2 Screening Platforms</td>
<td>249</td>
</tr>
<tr>
<td>7.6.3 High-Throughput, Low-Intensity Fed-Batch Cultivation</td>
<td>250</td>
</tr>
<tr>
<td>7.6.4 Medium-Throughput, High-Intensity Fed-Batch Cultivation</td>
<td>251</td>
</tr>
<tr>
<td>7.7 Resource-Efficient B. subtilis Fermentation Processes</td>
<td>252</td>
</tr>
<tr>
<td>7.8 Safety of B. subtilis</td>
<td>254</td>
</tr>
<tr>
<td>7.8.1 Absence of Acquired Added Antimicrobial Resistance Genes</td>
<td>255</td>
</tr>
<tr>
<td>7.8.2 Safety of Surfactin</td>
<td>256</td>
</tr>
<tr>
<td>7.8.3 Absence of Toxin Production</td>
<td>257</td>
</tr>
<tr>
<td>7.8.4 Absence of Sporulation</td>
<td>258</td>
</tr>
<tr>
<td>7.9 Bacillus Production Strains on the Factory Floor: Some Examples</td>
<td>258</td>
</tr>
<tr>
<td>7.9.1 Nucleotides</td>
<td>258</td>
</tr>
<tr>
<td>7.9.2 Riboflavin</td>
<td>263</td>
</tr>
<tr>
<td>7.9.3 (R)-Pantothenic Acid</td>
<td>267</td>
</tr>
<tr>
<td>7.9.4 Production Strains for Metabolites with Unusual Biochemistry</td>
<td>271</td>
</tr>
<tr>
<td>7.9.4.1 Biotin (Vitamin B7)</td>
<td>271</td>
</tr>
<tr>
<td>7.9.4.2 Thiamine (Vitamin B1)</td>
<td>273</td>
</tr>
<tr>
<td>7.9.4.3 Pyridoxine (Vitamin B6)</td>
<td>275</td>
</tr>
</tbody>
</table>
8
Host Organism: *Pseudomonas putida* 299

Ignacio Poblete-Castro, José M. Borrero-de Acuña, Pablo I. Nikel, Michael Kohlstedt, and Christoph Wittmann

8.1 Introduction 299
8.2 Physiology and Metabolism 300
8.2.1 Substrate Uptake 300
8.2.2 Major Catabolic Pathways 300
8.2.3 Degradation of Xenobiotics 302
8.2.4 Regulation of Core Carbon and Energy Metabolism 303
8.3 Genetic Manipulation 304
8.3.1 Transformation 304
8.3.2 Engineering Gene Expression 304
8.4 Systems Biology 307
8.4.1 Genomics and Genome Scale-Modeling 308
8.4.2 Transcriptomics 308
8.4.3 Proteomics 309
8.4.4 Metabolomics and Fluxomics 310
8.4.5 Multiomics Studies 311
8.5 Application in Biotechnology 311
8.5.1 Biopolymers and Advanced Materials 312
8.5.2 High-Value Chemicals 314
8.6 Future Outlook 315
References 315

Part III Exploiting Anaerobic Biosynthetic Power 327

9 Host Organisms: *Clostridium acetobutylicum/Clostridium beijerinckii* and Related Organisms 329

Frank R. Bengelsdorf, Anja Poehlein, Stefanie K. Flitsch, Sonja Linder, Bettina Schiel-Bengelsdorf, Benjamin A. Stegmann, Preben Krabben, Edward Green, Ying Zhang, Nigel Minton, and Peter Dürr

9.1 Introduction 329
9.2 Microorganisms 330
9.2.1 *C. acetobutylicum* 330
9.2.2 *C. beijerinckii* 331
9.2.3 *C. saccharobutylicum* 331
9.2.4 *C. saccharoperbutylacetonicum* 332
9.3 Bacteriophages 332
9.3.1 History of Bacteriophages Infecting Solventogenic Clostridia 332
9.3.2 Phage Specificity 335
9.3.3 Phage Effect 335
9.4 ABE Fermentation of Solvent-Producing *Clostridium* Strains 336
9.5 Genome-Based Comparison of Solvent-Producing Clostridium Strains 342
9.6 Regulation of Solvent Formation in C. acetobutylicum 345
9.7 Genetic Tools for Clostridial Species 346
9.8 Industrial Application of ABE Fermentation 353
Acknowledgments 355
References 355

10 Advances in Consolidated Bioprocessing Using Clostridium thermocellum and Thermoanaerobacter saccharolyticum 365
Lee R. Lynd, Adam M. Guss, Michael E. Himmel, Dhananjay Beri, Chris Herring, Evert K. Holwerda, Sean J. Murphy, Daniel G. Olson, Julie Paye, Thomas Rydzak, Xiongjun Shao, Liang Tian, and Robert Worthen
10.1 Introduction 365
10.2 CBP Organism Development Strategies 366
10.3 Plant Cell Wall Solubilization by C. thermocellum 367
10.3.1 Understanding and Describing Solubilization 367
10.3.2 Comparative Solubilization Effectiveness 368
10.4 Bioenergetics of C. thermocellum Cellulose Fermentation 372
10.4.1 Membrane Energetics 372
10.4.2 Sugar Conversion to Pyruvate 374
10.4.3 End-Product Formation 376
10.5 Metabolic Engineering 378
10.5.1 Transformation and Genetic Tool Development 378
10.5.2 Ethanol Tolerance and Titer 378
10.5.3 Metabolic Engineering for High Ethanol Yield 380
10.5.3.1 Metabolic Engineering of T. saccharolyticum 381
10.5.3.2 Hydrogenases 382
10.5.3.3 The Pyruvate to Ethanol Pathway in T. saccharolyticum 382
10.5.3.4 Engineering C. thermocellum and Comparison with T. saccharolyticum 383
10.5.3.5 Current State of Strain Development 386
10.6 Summary and Future Directions 386
Acknowledgments 388
References 388

11 Lactic Acid Bacteria 395
Luciana Ruiz-Rodríguez, Juliana Bleckwedel, Maria Eugenia Ortiz, Micaela Pescuma, and Fernanda Mozzi
11.1 Introduction 395
11.2 Fermented Foods 398
11.2.1 Fermented Milks 400
11.2.2 Cheeses 403
11.2.3 Fermented Meats 403
11.2.4 Nondairy Drinks and Foods 404
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.4.1</td>
<td>Roots (Yacon)</td>
<td>404</td>
</tr>
<tr>
<td>11.2.4.2</td>
<td>Fruits and Legumes</td>
<td>405</td>
</tr>
<tr>
<td>11.2.4.3</td>
<td>Gluten-Free Foods</td>
<td>406</td>
</tr>
<tr>
<td>11.3</td>
<td>Industrially Relevant Compounds</td>
<td>406</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Food Ingredients</td>
<td>406</td>
</tr>
<tr>
<td>11.3.1.1</td>
<td>Antimicrobial Compounds</td>
<td>406</td>
</tr>
<tr>
<td>11.3.1.2</td>
<td>Aroma Compounds</td>
<td>414</td>
</tr>
<tr>
<td>11.3.1.3</td>
<td>Enzymes</td>
<td>416</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Nutraceutics</td>
<td>420</td>
</tr>
<tr>
<td>11.3.2.1</td>
<td>Low-Calorie Sugars</td>
<td>420</td>
</tr>
<tr>
<td>11.3.2.2</td>
<td>Vitamins</td>
<td>423</td>
</tr>
<tr>
<td>11.3.2.3</td>
<td>Conjugated Linoleic Acids</td>
<td>426</td>
</tr>
<tr>
<td>11.3.2.4</td>
<td>γ-Aminobutyric Acid</td>
<td>427</td>
</tr>
<tr>
<td>11.3.2.5</td>
<td>Seleno-Proteins</td>
<td>428</td>
</tr>
<tr>
<td>11.3.2.6</td>
<td>Exopolysaccharides</td>
<td>429</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Bulk Compounds</td>
<td>430</td>
</tr>
<tr>
<td>11.3.3.1</td>
<td>Lactic Acid</td>
<td>430</td>
</tr>
<tr>
<td>11.3.3.2</td>
<td>Biofuels</td>
<td>433</td>
</tr>
<tr>
<td>11.4</td>
<td>Conclusions</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td>Conflict of Interest</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>435</td>
</tr>
</tbody>
</table>

Contents to Volume 2

List of Contributors | XV
About the Series Editors | XXVII
Preface | XXIX

Part IV Microbial Treasure Chests for High-Value Natural Compounds | 453

12 Host Organisms: Myxobacterium | 455
Silke C. Wenzel and Rolf Müller

13 Host Organism: Streptomyces | 487
Oksana Bilyk and Andriy Luzhetskyy

Part V Extending the Raw Material Basis for Bioproduction | 505

14 Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective | 507
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Cyanobacteria as a Host Organism</td>
<td>581</td>
</tr>
<tr>
<td></td>
<td>Fabienne Duchoud, Derrick S.W. Chuang, and James C. Liao</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Host Organisms: Algae</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>Elizabeth A. Specht, Prema S. Karunanithi, Javier A. Gimpel, William S. Ansari, and Stephen P. Mayfield</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Host Organisms: Mammalian Cells</td>
<td>645</td>
</tr>
<tr>
<td></td>
<td>Jennifer Pfizenmaier and Ralf Takors</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Industrial Microorganisms: Saccharomyces cerevisiae and other Yeasts</td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>Diethard Mattanovich, Brigitte Gasser, Michael Egermeier, Hans Marx, and Michael Sauer</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Industrial Microorganisms: Pichia pastoris</td>
<td>687</td>
</tr>
<tr>
<td></td>
<td>Diethard Mattanovich, Michael Sauer, and Brigitte Gasser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>715</td>
</tr>
</tbody>
</table>
Contents to Volume 1

List of Contributors XVII
About the Series Editors XXIX
Preface XXXI

Part I Industrial Biotechnology: From Pioneers to Visionary 1

1 History of Industrial Biotechnology 3
Arnold L. Demain, Erick J. Vandamme, John Collins, and Klaus Buchholz

2 Synthetic Biology: An Emerging Approach for Strain Engineering 85
Jie Sun and Hal Alper

3 Toward Genome-Scale Metabolic Pathway Analysis 111
Jürgen Zanghellini, Matthias P. Gerstl, Michael Hanscho, Govind Nair, Georg Regensburger, Stefan Müller, and Christian Jungreuthmayer

4 Cell-Free Synthetic Systems for Metabolic Engineering and Biosynthetic Pathway Prototyping 125
Ashty S. Karim, Quentin M. Dudley, and Michael C. Jewett

Part II Multipurpose Bacterial Cell Factories 149

5 Industrial Biotechnology: Escherichia coli as a Host 151
Matthew Theisen and James C. Liao

6 Industrial Microorganisms: Corynebacterium glutamicum 183
Judith Becker and Christoph Wittmann

7 Host Organisms: Bacillus subtilis 221
Hans-Peter Hohmann, Jan M. van Dijl, Laxmi Krishnappa, and Zoltán Prágai
Part III Exploiting Anaerobic Biosynthetic Power 327

9 Host Organisms: Clostridium acetobutylicum/Clostridium beijerinckii and Related Organisms 329
 Frank R. Bengelsdorf, Anja Poehlein, Stefanie K. Flitsch, Sonja Linder, Bettina Schiel-Bengelsdorf, Benjamin A. Stegmann, Preben Krabben, Edward Green, Ying Zhang, Nigel Minton, and Peter Dürre

10 Advances in Consolidated Bioprocessing Using Clostridium thermocellum and Thermoanaerobacter saccharolyticum 365
 Lee R. Lynd, Adam M. Guss, Michael E. Himmel, Dhananjay Beri, Chris Herring, Evert K. Holwerda, Sean J. Murphy, Daniel G. Olson, Julie Paye, Thomas Rydzak, Xiongjun Shao, Liang Tian, and Robert Worthen

11 Lactic Acid Bacteria 395
 Luciana Ruiz-Rodríguez, Juliana Bleckwedel, Maria Eugenia Ortiz, Micaela Pescuma, and Fernanda Mozzi

Contents to Volume 2

List of Contributors XV
About the Series Editors XXVII
Preface XXIX

Part IV Microbial Treasure Chests for High-Value Natural Compounds 453

12 Host Organisms: Myxobacterium 455
 Silke C. Wenzel and Rolf Müller
 12.1 Introduction into the Myxobacteria 455
 12.2 Phylogeny and Classification 457
 12.3 Physiology 459
 12.4 Growth and Nutritional Requirements 460
 12.5 Genetics and Genomics 462
 12.6 Secondary Metabolism 464
 12.7 Myxococcus 468
 12.7.1 Introduction 468
 12.7.2 Secondary Metabolism of Myxococcus xanthus 469
 12.7.3 Myxococcus xanthus as Expression Host 470
14.6 Limitations and Barriers to Genetic Modification of Extreme Thermophiles 521
14.7 Current Status of Metabolic Engineering Efforts and Prospects in Extreme Thermophiles 523
14.7.1 Pyrococcus furiosus 523
14.7.1.1 Genetic Tools – P. furiosus 523
14.7.1.2 Metabolic Engineering – P. furiosus 528
14.7.2 Thermococcus Species 537
14.7.2.1 Genetic Tools – Thermococcus Species 537
14.7.2.2 Metabolic Engineering – Thermococcus Species 538
14.7.3 Sulfolobus Species 538
14.7.3.1 Genetic Tools – Sulfolobus Species 539
14.7.3.2 Metabolic Engineering – Sulfolobus Species 541
14.7.4 Thermotoga maritima 541
14.7.4.1 Genetic Tools – Thermotoga Species 542
14.7.4.2 Metabolic Engineering – Thermotoga Species 544
14.7.5 Thermus Species 544
14.7.5.1 Genetic Tools – Thermus Species 545
14.7.5.2 Metabolic Engineering – Thermus Species 547
14.7.6 Caldicellulosiruptor bescii 548
14.7.6.1 Genetic Tools – Caldicellulosiruptor bescii 548
14.7.6.2 Metabolic Engineering – Caldicellulosiruptor bescii 550
14.7.7 Thermoanaerobacter Species 552
14.7.7.1 Genetic Tools – Thermoanaerobacter Species 552
14.7.7.2 Metabolic Engineering – Thermoanaerobacter Species 553
14.7.8 Caldanaerobacter subterraneus subsp. tengcongensis 555
14.7.8.1 Genetic Tools – Caldanaerobacter subterraneus subsp. tengcongensis 555
14.7.8.2 Metabolic Engineering – Caldanaerobacter subterraneus subsp. tengcongensis 556
14.8 Metabolic Engineering of Extreme Thermophiles – Tool Kit Needs 556
14.8.1 Promoters 556
14.8.2 Ribosomal Binding Sites 557
14.8.3 Reporter Genes 558
14.9 Conclusions and Future Perspectives 558
Acknowledgments 560
References 560

15 Cyanobacteria as a Host Organism 581
Fabienne Duchoud, Derrick S.W. Chuang, and James C. Liao
15.1 Introduction and Relevance: Cyanobacteria as a Host Organism 581
15.2 General Description of Cyanobacteria 582
15.2.1 A Diverse Bacterial Group and Its Metabolisms 582
15.2.2 Nitrogen Fixation 583
15.2.3 Circadian Clock 584
15.2.4 Light/Dark Regulation 584
15.3 Genetic Tools 585
15.3.1 Transformation 585
15.3.2 Promoters 586
15.3.3 Terminators 587
15.3.4 Ribosome Binding Sites 588
15.4 Improving Photosynthetic Efficiency 588
15.4.1 Improving Light Harvesting 588
15.4.2 Improving Carbon Fixation 589
15.5 Direct Conversion of CO₂ into Biofuels and Chemicals 590
15.5.1 Fuels and Chemicals from Acetyl-CoA 590
15.5.2 Fuels and Chemicals from Keto Acids 594
15.5.3 Chemicals from TCA Cycle Intermediates 596
15.5.4 Hydrogen 596
15.6 Conclusions 597
References 597

16 Host Organisms: Algae 605
Elizabeth A. Specht, Prema S. Karunanithi, Javier A. Gimpel, William S. Ansari, and Stephen P. Mayfield
16.1 Introduction to Algae as an Industrial Organism 605
16.1.1 Algal Diversity 605
16.1.2 Scalability and Growth Rate 606
16.1.3 Genetic Malleability 606
16.2 Algal Genetic Engineering 606
16.2.1 Nuclear Genetic Engineering 607
16.2.1.1 Nuclear Transformation Methods 607
16.2.1.2 Regulation of Nuclear Transgene Expression 607
16.2.1.3 Tools for Increased Nuclear Gene Expression 608
16.2.1.4 Selection and Screening Methods 608
16.2.1.5 Gene Targeting and Genome Editing 609
16.2.2 Chloroplast Genetic Engineering 610
16.2.2.1 Chloroplast Transformation Methods 610
16.2.2.2 Gene Regulation in the Chloroplast 611
16.2.2.3 Chloroplast Selection and Reporters 611
16.2.3 Other Transformable Species 612
16.2.3.1 Parameters for Transformation Optimization 612
16.2.3.2 Species Successfully Transformed 613
16.3 Therapeutic and Nutraceutical Applications 613
16.3.1 Protein Therapeutics 614
16.3.1.1 Human Antibodies and Antibody–Drug Conjugates 614
16.3.1.2 Other Chloroplast-Produced Protein Therapeutics 615
16.3.1.3 Nuclear-Expressed Protein Therapeutics 615
Contents

16.3.2 Nutraceuticals and Nutritional Supplements 616
16.3.2.1 Omega-3 Fatty Acids 616
16.3.2.2 Source of Organic Selenium 616
16.3.2.3 Carotenoids from Wild-Type and Engineered Algae 616
16.3.3 Recombinant Vaccines 617
16.3.3.1 Vaccine Antigens Produced in Algae 617
16.3.3.2 Animal Efficacy Studies 618
16.3.3.3 Recombinant Oral Vaccines 619
16.4 Bioenergy Applications 619
16.4.1 Altering Lipid Metabolism 620
16.4.1.1 Changes in Nutrient Availability 620
16.4.1.2 Changes in Temperature 621
16.4.1.3 Changes in Light Intensity 621
16.4.1.4 Genetic Manipulation of Lipid Content 621
16.4.2 Increasing Photosynthetic Efficiency 622
16.4.2.1 Improving Light Utilization 622
16.4.2.2 Improving Photosynthetic Efficiency 622
16.4.2.3 Expanding the Photosynthetically Active Spectrum 623
16.4.3 Modifying Carbon Assimilation 623
16.4.3.1 Engineering RuBisCO 624
16.5 Other Industrial Applications 624
16.5.1 Animal Feedstocks 625
16.5.1.1 Algal Protein Extracts as Animal Feedstocks 625
16.5.1.2 Engineered Algae to Enhance Immune Function 625
16.5.2 Industrial Enzymes 626
16.5.2.1 Enzymes for Processing Cellulosic Biofuels 626
16.5.2.2 Enzymes for Food Processing 626
16.6 Industrial-Scale Algal Production 627
16.6.1 Enclosed Photobioreactors and Fermenters 627
16.6.1.1 Optimizing Photobioreactor Design 628
16.6.1.2 Modifying Trophic Conversion Pathways for Heterotrophic Growth 628
16.6.2 Open Pond Growth 629
16.6.2.1 Media and Water Optimization 629
16.6.2.2 Efficient Harvesting Methods 629
16.7 Conclusions and Potential of Algal Platforms 630
References 630

Part VI Eukaryotic Workhorses: Complex Cells Enable Complex Products 643

17 Host Organisms: Mammalian Cells 645
Jennifer Pfizenmaier and Ralf Takors
17.1 Introduction 645
17.2 Basics of Cellular Structure and Metabolism 646
17.2.1 Cellular Structure 646
17.2.2 Metabolism 650
17.3 The Genome of CHO Cells 651
17.4 Molecular Biology Tools 652
17.5 Kinetics of Growth and Product Formation 654
17.6 Intracellular Metabolome Analysis 656
17.7 Proteome and Gene Expression Analysis 661
17.8 Improving Cellular Performance by Genetic and Metabolic Engineering 662
17.9 Outlook 664

References 664

18 Industrial Microorganisms: *Saccharomyces cerevisiae* and other Yeasts 673
Diethard Mattanovich, Brigitte Gasser, Michael Egermeier, Hans Marx, and Michael Sauer
18.1 Industrial Application of Yeasts 673
18.2 Baker’s Yeast as Versatile Host for Metabolic Engineering 675
18.3 Protein Production in Yeasts 677
18.4 Lipid Production in Yeasts 678
18.5 Pentose-Utilizing Yeasts 680
18.5.1 Engineered *S. cerevisiae* 680
18.5.2 Yeasts that Naturally Utilize Xylose and Other Pentoses 681
18.6 Conclusions 681
Conflict of Interest 682
References 682

19 Industrial Microorganisms: *Pichia pastoris* 687
Diethard Mattanovich, Michael Sauer, and Brigitte Gasser
19.1 Physiology and Genetics of *Pichia pastoris* 687
19.1.1 Methylotrophic Yeasts 687
19.1.2 Taxonomy and Natural Isolates 688
19.1.3 Genomics 689
19.1.4 Physiology 689
19.2 Methylotrophic Metabolism 691
19.2.1 Dissimilation of Methanol to Generate Energy 692
19.2.2 Assimilation of Methanol to Form Biomass 692
19.2.3 Implications for Production Processes 693
19.3 Application for the Production of Recombinant Proteins 693
19.3.1 Promoters 693
19.3.2 Protein Secretion 695
19.3.3 Vectors and Selection Markers 696
19.3.4 Integration of Multiple Gene Copies 698
19.3.5 Metabolic Engineering to Enhance Productivity of Recombinant Proteins 700
19.3.6 Engineering Protein Folding and Secretion Pathways to Enhance Productivity 701
19.3.7 Protein Glycosylation and Glycoengineering 703
19.3.8 Recombinant Proteins on the Market 703
19.4 Application of *P. pastoris* for Metabolite Production 703
19.5 Conclusion 705
References 705

Index 715
List of Contributors

Michael W.W. Adams
University of Georgia
Department of Biochemistry and Molecular Biology
Life Sciences Bldg.
Athens, GA 30602–7229
USA

Hal Alper
Department of Chemical Engineering
The University of Texas at Austin
200 E Dean Keeton Street
Stop C0400
Austin, TX 78712
USA

Andriy Luzhetskyy
Helmholtz Institute for Pharmaceutical Research, Actinobacteria Metabolic Engineering Group
Universitätscampus E8
66123 Saarbrücken
Germany

William S. Ansari
University of California
California Center for Algae Biotechnology, Division of Biological Sciences
9500 Gilman Drive
San Diego, La Jolla, CA 92093
USA

Judith Becker
Saarland University
Institute of Systems Biotechnology
Campus A 15
66123 Saarbrücken
Germany

Frank R. Bengelsdorf
Universität Ulm
Institut für Mikrobiologie und Biotechnologie
Albert-Einstein-Allee 11
89081 Ulm
Germany
List of Contributors

Dhananjay Beri
Dartmouth College
Thayer School of Engineering
14 Engineering Drive
Hanover, NH 03755
USA

and

BioEnergy Science Center
Oak Ridge, TN
USA

Oksana Bilyk
Helmholtz Institute for Pharmaceutical Research, Actinobacteria Metabolic Engineering Group
Universitätscampus E8
66123 Saarbrücken
Germany

Juliana Bleckwedel
Centro de Referencia para Lactobacilos (CERELA)-CONICET
Chacabuco 145
San Miguel de Tucumán 4000
Argentina

José M. Borrero-de Acuña
Universidad Andrés Bello
Center for Bioinformatics and Integrative Biology
Biosystems Engineering Laboratory
Faculty of Biological Sciences
Av. República 239
8340176 Santiago de Chile
Chile

Klaus Buchholz
Technical University Braunschweig
Institute of Chemical Engineering
Hans-Sommer-Str. 10
38106 Braunschweig
Germany

Derrick S.W. Chuang
University of California
Department of Chemical and Biomolecular Engineering
420 Westwood Plaza
5531 Boelter Hall
Los Angeles, CA 90095
USA

John Collins
Science historian
Leipziger Straße 82A
38124 Braunschweig
Germany

Jonathan M. Conway
North Carolina State University
Department of Chemical and Biomolecular Engineering
EB-1, 911 Partners Way
Raleigh, NC 27695-7905
USA

James A. Counts
North Carolina State University
Department of Chemical and Biomolecular Engineering
EB-1, 911 Partners Way
Raleigh, NC 27695-7905
USA
Arnold L. Demain
Drew University
Charles A. Dana Research
Institute for Scientists Emeriti
(R.I.S.E.)
36, Madison Ave
Madison, NJ 07940
USA

Fabienne Duchoud
University of California
Department of Chemical and
Biomolecular Engineering
420 Westwood Plaza
5531 Boelter Hall
Los Angeles, CA 90095
USA

Quentin M. Dudley
Northwestern University
Department of Chemical and
Biological Engineering
2145 Sheridan Road
Evanston, IL 60208
USA

and

Peter Dürre
Universität Ulm
Institut für Mikrobiologie und
Biotechnologie
Albert-Einstein-Allee 11
89081 Ulm
Germany

Michael Egermeier
BOKU – University of Natural Resources and Life Sciences
Department of Biotechnology
Muthgasse 18
1190 Vienna
Austria

and

Maria Eugenia Ortiz
Centro de Referencia para Lactobacilos
(CERELA)-CONICET
Chacabuco 145
San Miguel de Tucumán 4000
Argentina

Stefanie K. Flitsch
Universität Ulm
Institut für Mikrobiologie und Biotechnologie
Albert-Einstein-Allee 11
89081 Ulm
Germany