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Introduction 

1.1 The Area of Research 

In this thesis, we will investigate the 'market-conform' pricing of newly 
issued contingent claims. A contingent claim is a derivative whose value 
at any settlement date is determined by the value of one or more other 
underlying assets, e.g., forwards, futures, plain-vanilla or exotic options 
with European or American-style exercise features. Market-conform 
pricing means that prices of existing actively traded securities are taken 
as given, and then the set of equivalent martingale measures that are 
consistent with the initial prices of the traded securities is derived using 
no-arbitrage arguments. Sometimes in the literature other expressions 
are used for 'market-conform' valuation - 'smile-consistent' valuation 
or 'fair-market' valuation - that describe the same basic idea. 

The seminal work by Black and Scholes (1973) (BS) and Merton 
(1973) mark a breakthrough in the problem of hedging and pricing 
contingent claims based on no-arbitrage arguments. Harrison and Kreps 
(1979) provide a firm mathematical foundation for the Black-Scholes-
Merton analysis. They show that the absence of arbitrage is equivalent 
to the existence of an equivalent martingale measure. Under this mea­
sure the normalized security price process forms a martingale and so 
securities can be valued by taking expectations. If the securities market 
is complete, then the equivalent martingale measure and hence the price 
of any security are unique. If the market is not complete, a much more 
realistic assumption in practice, this will no longer hold, so that the 
investor has to decide how to pick the equivalent martingale measure 
to be used for pricing. 

The approaches in the literature can be divided into two main 
classes. The first class starts with an assumption about the data-
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generating process, i.e. about the stochastic process that drives the 
underlying asset price. The most popular choice for the data-generating 
process is a geometric Brownian motion, first applied in option pricing 
theory by Black and Scholes (1973). However, the behavior of implied 
volatilities derived from inverting the Black-Scholes formula, makes the 
validity of this model questionable. The empirical evidence provided by, 
among others, Rubinstein (1994), Jackwerth and Rubinstein (1996), 
Dumas et al. (1998), or A'lt-Sahalia and Lo (1998) shows that implied 
volatilities vary across different strikes (i.e. they exhibit a smiles or 
skews pattern) and different times to maturity (term structure), while 
the BS model does not allow for such variations. These variations can 
roughly be explained by more sophisticated models, such as stochastic 
volatility (e.g. Hull and White (1987), Heston (1993), Schobel and Zhu 
(1999)), stochastic interest rates (e.g. Merton (1973), Amin and Jarrow 
(1992)), jump models (e.g. Merton (1976), Bates (1991)), or combina­
tions of the different processes (e.g. Bates (1996), Scott (1997), Bakshi 
and Chen (1997)). After defining a stochastic process for the underly­
ing, this process has to be rewritten in risk-neutral terms. Then, the 
parameters of the processes for the underlying asset price and for the 
volatility and/or jump process are estimated. Most calibration proce­
dures rely on the existence of explicit pricing formulas for the prices 
of benchmark instruments, since the unknown parameters are found 
by inverting such pricing formulas. When closed-form expressions ex­
ist, the model parameters can often be simply estimated by employing 
least-squares methods. However, closed-form solutions for prices are not 
always available or easy-to-compute. In this case, fitting the model to 
market prices implies searching the parameter space via direct simula­
tion, which is computationally expensive and time-consuming. Finally, 
after specifying the model parameters of the stochastic processes, the 
prices of new contingent claims are derived as a function of the para­
meters of these processes and the price of the underlying asset. 

Unfortunately, these models often do not fit observed market prices 
accurately (e.g. Das and Sundaram (1999), Belledin and Schlag (1999)). 
Therefore, they should be used carefully in practice, especially to price 
and hedge exotic options. This is due to the fact that in order to improve 
the hedging performance, exotic and standard options need to be valued 
consistently, since exotic options are often hedged with portfolios of 
European options. These problems are discussed in the literature on 
'market-conform' or 'smile-consistent' no-arbitrage models, the second 
class of no-arbitrage approaches. 
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Market-conform models reverse the approach followed in the con­
ventional stochastic volatility or jump models. The prices of actively 
traded European options are taken as given, and they are used to infer 
information about the underlying price process. The implementation 
of market-conform models for pricing and hedging purposes is mainly 
done in a discrete time framework. The tools used are either implied 
binomial/trinomial trees, implicit finite difference schemes, or weighted 
Monte Carlo simulations. 

The most popular 'market-conform' approaches are the so-called im­
plied tree models, which are extending the seminal binomial model of 
Cox et al. (1979). In the standard Cox et al. (1979) tree, the size of 
the up and down move of the underlying and the respective transition 
probability of such moves are constant, since they depend on the vola­
tility, which is assumed to be constant. This is no longer the case for 
imphed trees. Implied binomial (or trinomial) trees are built from the 
known prices of European options. In order to build a consistent risk-
neutral price process of the underlying, these exchange-traded options 
are used to infer information about the data-generating process. They 
are called 'implied trees', because they are consistent with or implied 
by the volatility structure and can be viewed as a discretization of gen­
eralized one-dimensional diffusions in which the volatility parameter is 
allowed to be a function of both time and asset price. 

We propose a new method to construct arbitrage-free implied bino­
mial trees based on the approach by Brown and Toft (1999). As the 
output of our procedure we get an arbitrage-free, risk-neutral implied 
binomial tree, which is consistent with the term structure of implied 
volatilities and also with the implied volatility smile. The implied risk-
neutral probability distributions (IRNPDs) for later maturity dates are 
an endogenous result of the model and take the IRNPDs of the prior 
maturity dates into account. Our method can also be used to construct 
arbitrage-free, risk-neutral implied multinomial trees. This multinomial 
setting can be used to calibrate models with more than one state vari­
able, e.g. the underlying price process and stochastic volatility. Since 
the approaches suggested by Rubinstein (1994), Dupire (1994), Derman 
and Kani (1994), Derman et al. (1996), Jackwerth (1997), Barle and Ca-
kici (1998), and Brown and Toft (1999) are closely related to our new 
technique, we briefly describe the differences and, in particular, the 
drawbacks of these models. For more detailed surveys see Jackwerth 
(1999) or Skiadopoulos (2001). 

The key idea of the approach suggested by Rubinstein (1994) is the 
estimation of the IRNPD at the terminal date of the tree. This IRNPD 
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is close to a prior guess subject to some constraints. There are two 
major drawbacks of this method. First, the impUed binomial tree fits 
the strike dimension of the volatility smile only at one single matu­
rity date and neglects information for traded options with shorter or 
longer maturities. This leads directly to the second problem, namely 
the fact that implied binomial trees constructed for two different ma­
turity dates are not necessarily consistent for overlapping time-periods. 
To overcome these problems, Jackwerth (1997) develops a generalized 
implied binomial tree by introducing a piecewise-linear weight func­
tion and by using nodal probabilities instead of path probabilities. This 
generalization allows for the incorporation of all the information and 
fits the complete volatility surface. However, the calibration requires a 
non-linear optimization approach to fit the tree and can become com­
putationally expensive. Both aforementioned approaches estimate the 
terminal IRNPD and work backwards in time. Furthermore, the im­
plied binomial trees are arbitrage-free by construction. Another way to 
construct an implied binomial tree was suggested by Brown and Toft 
(1999). They use a three-step procedure and get an arbitrage-free, semi-
recombining implied binomial tree, which is consistent with the implied 
volatility surface. However, this method does not use all the available 
information optimally, since the IRNPD for each maturity date is esti­
mated separately. Moreover, in some cases, the optimization problem 
can not be solved, since the constraints of the optimization problem can 
not be satisfied. 

Derman and Kani (1994) construct an implied tree assuming that 
any option value can be interpolated or extrapolated from the prices 
of actively traded options. Therefore, the resulting implied tree fits the 
volatility smile in strike and time dimension. Unfortunately, negative 
transition probabilities can occur and must be replaced by values be­
tween zero and one. This may lead to numerical instability of the tree, 
especially for a large number of time steps. Barle and Cakici (1998) 
extend the approach by Derman and Kani (1994) to reduce the numeri­
cal problems and increase the stability of the algorithm. However, even 
this approach does not guarantee positive transition probabilities in all 
nodes. 

The main characteristic of implied trinomial trees is tha t the com­
plete state space for the tree is fixed in advance and only the transition 
probabilities must be calculated. To construct the implied trinomial 
tree, missing prices must also be calculated by interpolation or ex­
trapolation of the implied volatility smile. Therefore, the performances 
of the models depend on the respective interpolation or extrapolation 


