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Editorial 

This book is the fourth volume on applied research in Distribution Logis­
tics that results from the work of a group of mainly European researchers 
meeting regularly at the "IWDL" (International Workshop on Distribution 
Logistics). The book contains a selection of research papers, some of which 
have been presented at the IWDL 7 in Grainau, Germany, in October 2002. It 
continues the tradition of the previous volumes, all appeared as Springer Lec­
ture Notes in Economics and Mathematical Systems (no. 460, 1998; no. 480, 
1999; no. 519, 2002), which have found a favourable acceptance by the lo­
gistics community. Recently, the second volume has appeared in a Chinese 
translation. 

Distribution Logistics make up a major part of Supply Chain Manage­
ment and concern all flows of goods and information between the production 
sites and the customers. Various trends contribute to a considerable increase 
in complexity of distribution systems, such as the globalization of the business 
of most manufacturers and the increasing dynamics of the customer demands. 
It is therefore not surprising, that the interest in "advanced" planning meth­
ods, based on quantitative optimization, increases in practice, in particular for 
the design of distribution systems and the control of the various interrelated 
transportation and warehousing processes. This development is favoured by 
the advances in the information and communication technology, which has 
enabled a nearly unlimited availability of data at any place at any time. On 
this background, a new kind of supply chain planning software for manufac­
turing industries, the "Advanced Planning Systems", have emerged. Their 
usefulness for Distribution Logistics however is restricted, as the manufac­
turers have out sourced major tasks of it to logistics service providers (LSP), 
who combine the distribution processes for several supply chains. Therefore, 
Distribution Logistics is mainly the responsibility of the LSP. But Advanced 
Planning Systems for an LSP do not exist yet. The papers in this book deal 
with some of these developments and challenges. 

This book, like its predecessors, includes papers on a recent branch of 
Logistics, Reverse Logistics. The reason for this is threefold: First, Reverse 
Logistics are closely related to Distribution Logistics, as the reverse flows 
link again customers and production sites. Second, the practical importance 
of Reverse Logistics is fast-growing, and third, a number of members in the 
IWDL group have become experts in this field. 
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The 13 papers of this volume have been arranged in four chapters, the 
first three on the traditional subjects: design of distribution systems, tactical 
and operational vehicle routing and warehousing operations. The last chapter 
is dedicated to Reverse Logistics. 

Chapter 1 addresses theory and application of the distribution network 
design and distribution concepts for E-commerce. Gortz and Klose consider 
the general Capacitated Facility Location Problem (CFLP), which is a basic 
model for various network design problems. They review the existing solution 
methods for this hard combinatorial problem and suggest a new type of lower 
bounds based on column generation. The lower bound is used in a branch & 
bound algorithm and tested in a computational experiment. Bauer stresses 
the need for considering cost and capacities of warehouse processes when de­
signing a distribution network. She introduces a "Modular Node Model" for 
that purpose and shows the impact of the warehouse processes on the result­
ing network. Blaemhaf, Smeets and van Nunen report an interesting practical 
case of supply chain design for the Dutch pig husbandry. The network consist­
ing of farmers, slaughter houses, wholesalers and retailers is optimized using 
a mixed integer programming model. Daduna and Lenz deal with the of­
ten neglected aspects of physical distribution caused by "Online-Shopping". 
They investigate its impact on the traffic for the "last mile", both for the 
commercial freight deliveries and the private shopping trips. 

Chapter 2 deals with different cases of vehicle routing in various prac­
tical environments. Mansini, Speranza and Angelelli address on-line rout­
ing problems occurring in the multi-depot network of an LSP. They analyse 
the particular planning situation and present a model and new algorithms. 
Archetti and Speranza report on the solution of a case of waste collection in 
the county of Brescia, Italy. It contains a pickup and delivery problem for the 
transport of empty and full containers, where various side constraints have 
to be considered. Bieding deals with planning time-critical standard-tours, as 
they occur in the daily distribution of newspapers. A focus is on the improve­
ment of data on travel times using modern measuring systems such as GPS 
and RFID. Schonberger and Kapfer consider a general pickup and delivery 
problem, where a distinction is made between own vehicles, which are to be 
routed, and subcontracted vehicles, which are paid per load. 

The papers in Chapter 3, again, concern routing problems, but for order­
picking within a warehouse. Le Anh and de Koster investigate the perfor­
mance of various dispatching rules for the on-line control of the vehicles. 
They report a simulation study in two real-life environments. Le Duc and de 
Koster present models for estimating the length of an order-picking tour, de­
pending on the storage strategy. These approximations allow the optimization 
of the boundaries between the warehouse zones and of the warehouse layout. 

Finally, Chapter 4 consists of contributions to the field of Reverse Lo­
gistics. For the case of reusing components of products after their end of 
live, Geyer and Van Wassenhave study the effect of time constraints, such 
as a limited component durability or a finite product life cycle. In the same 
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context, Krikke, van Nunen, Zuidwijk and Kuik consider the management of 
return flows, using information on the "installed base" of product placements 
in the market. De Brito, Dekker and Flapper provide a comprehensive review 
of case studies in Reverse Logistics, classifying the content of more than 60 
publications. 

The editors are indebted to all authors for their valuable contributions 
and to the referees whose work was essential to ensure a high quality level of 
this book. 

Bernhard Fleischmann, University of Augsburg, Germany 
Andreas Klose, University of Zurich, Switzerland 

July 2004 
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An Exact Column Generation Approach to the 
Capacitated Facility Location Problem 

Andreas Klose! and Simon Gortz2 

1 University of St. Gallen and Institute for Operations Research, University of 
Zurich, Switzerland 

2 Faculty of Economics and Social Sciences, University of Wuppertal, Germany 

Abstract The Capacitated Facility Location Problem (CFLP) is a well-known 
combinatorial optimization problem with applications in distribution and produc­
tion planning. It consists in selecting plant sites from a finite set of potential sites 
and in allocating customer demands in such a way as to minimize operating and 
transportation costs. A variety of lower bounds based on Lagrangean relaxation and 
subgradient optimization has been proposed for this problem. However, in order to 
solve large or difficult problem instances information about a primal (fractional) 
solution is important. Therefore, we employ column generation in order to solve 
a corresponding master problem exactly. The algorithm uses different strategies 
for stabilizing the column generation process. Furthermore, the column generation 
method is employed within a branch-and-price procedure for computing optimal 
solutions to the CFLP. Computational results are reported for a set of larger and 
difficult problem instances. The results are compared with computational results 
obtained from a branch-and-bound procedure based on Lagrangean relaxation and 
subgradient optimization and a branch-and-bound method that uses the LP relax­
ation and polyhedral cuts. 

1 Introduction 

The Capacitated Facility Location Problem (CFLP) is a well-known and well 
studied combinatorial optimization problem. It consists in deciding which 
plants to open from a given set of potential plant locations and how to assign 
customers to those plants. The objective is to minimize total fixed and ship­
ping costs. Constraints are that each customer's demand must be satisfied 
and that each plant cannot supply more than its capacity if it is open. Appli­
cations of the CFLP include location and distribution planning, lot sizing in 
production planning (Pochet and Wolsey, 1988), and telecommunication net­
work design (Kochmann and McCallum, 1981; Mirzaian, 1985; Boffey, 1989; 
Chardaire, 1999). 

Numerous heuristic and exact algorithms for the CFLP have been pro­
posed in the literature. Classical heuristics apply ADD, DROP and inter­
change moves in conjunction with dominance criteria and approximations of 
the cost change caused by a move (Kuehn and Hamburger, 1963; Khumawala, 
1974; Jacobsen, 1983; Domschke and Drexl, 1985; Mateus and Bornstein, 
1991). Tabu search procedures have been developed for related problems 
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like the p-median problem (Rolland et al., 1996) and the CFLP with single 
sourcing (Delmaire et al., 1999). Based on a rounding and filtering technique 
proposed by Lin and Vitter (1992), Shmoys et al. (1997) derive new approxi­
mation results for the metric CFLP. Korupolu et al. (1998) show that simple 
local search heuristics also give polynomial constant factor approximation 
algorithms for this problem. Magnanti and Wong (1981) and Wentges (1996) 
apply Benders' decomposition and show how to derive strong Benders' cuts 
for the CFLP. Polyhedral results for the CFLP have been obtained by Leung 
and Magnanti (1989), Aardal et al. (1995) and Aardal (1998). Aardal (1998) 
uses these results in a branch-and-cut algorithm for the CFLP. A variety of 
solution approaches for the CFLP, however, use Lagrangean relaxation. La­
grangean relaxation of the demand constraints with or without addition of an 
aggregate capacity constraint or another surrogate constraint is considered in 
Geoffrion and McBride (1978), Nauss (1978), Christofides and Beasley (1983), 
Shetty (1990), and Ryu and Guignard (1992). Beasley (1988) relaxes both 
the demand and capacity constraints; the resulting relaxation is, therefore, 
no stronger than the LP relaxation. Van Roy (1986) employs Lagrangean 
relaxation of the capacity constraints and cross decomposition in order to 
solve the resulting Lagrangean dual. 

With the exception of Van Roy's (1986) cross decomposition algorithm, 
Lagrangean relaxation approaches for the CFLP generally use subgradient 
optimization in order to obtain an approximate solution to the Lagrangean 
dual. However, for solving larger and/or more difficult instances of the CFLP 
the knowledge of an exact solution of the corresponding master problem can 
be advantageous. Firstly, this gives an improved lower bound and, secondly, 
the knowledge of a fractional optimal solution of the primal master problem 
can be exploited to devise (better) branching decisions in the framework of 
a branch-and-price algorithm. In this paper, column generation is, therefore, 
employed in order to obtain exact solutions to the master problem. The ap­
proach is based on relaxing the demand constraints in a Lagrangean manner, 
and a hybrid mixture of subgradient optimization and a "weighted" decom­
position method is applied for solving the master problem. Furthermore, the 
column generation procedure is embedded in a branch-and-price algorithm 
for computing optimal solutions to the CFLP. 

This paper is organized as follows. The next section summarizes important 
Lagrangean bounds for the CFLP. Section 3 describes the column generation 
method, that is the master problem and the pricing subproblem, the employed 
method for stabilizing the decomposition as well as the branch-and-price 
procedure. Section 4 gives computational results which have been obtained 
for a set of problem instances with up to 200 potential plant locations and 
500 customers. Finally, the findings are summarized in section 5. 
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2 Lagrangean Relaxation 

Mathematically, the CFLP can be stated as the following linear mixed-integer 
program: 

Z = min L L CkjXkj + L liYj 

kEK jEJ jEJ 

s. t. L Xkj = 1, 'if k E K 

jEJ 

L dkXkj :S SjYj , 'if j E J 
kEK 

LSjYj ~ d(K) 

jEJ 

Xkj - Yj :S 0, 

o :S Xkj :S 1, 0 :S Yj :S 1, 

Yj E {O, I}, 

'ifkEK,'ifjEJ 

'ifkEK,'ifjEJ 

'if j E J, 

(0) 

(D) 

(C) 

(T) 

(B) 

(N) 

(I) 

where K is the set of customers and J the set of potential plant locations; 
Ckj is the cost of supplying all of customer k's demand d k from location j, 
Ii is the fixed cost of operating facility j and Sj its capacity if it is open; 
the binary variable Yj is equal to 1 if facility j is open and 0 otherwise; 
finally, Xkj denotes the fraction of customer k's demand met from facility j. 
The constraints (D) are the demand constraints and constraints (C) are the 
capacity constraints. The aggregate capacity constraint (T) and the implied 
bounds (B) are superfluous; they are, however, usually added in order to 
sharpen the bound if Lagrangean relaxation of constraints (C) and/or (D) 
is applied. Without loss of generality it is assumed that Ckj ~ 0 'if k, j, 
Ii ~ 0 'if j, Sj > 0 'if j, dk ~ o 'if k, and LjEJ Sj > d(K) = LkEK d k · 

Lagrangean relaxation approaches for the CFLP relax at least one the 
constraint sets (D) or (C); otherwise the Lagrangean subproblem has the 
same complexity as the CFLP itself. Cornuejols et al. (1991) examine all 
possible ways of applying Lagrangean relaxations or Lagrangean decompo­
sitions to the problem consisting of constraints (D), (C), (T), (B), (N), and 
(I). Following their notation, let 

- Z~ denote the resulting lower bound if constraint set S is ignored and 
constraints R are relaxed in a Lagrangean fashion, and let 

- ZRl/R2 denote the bound which results if Lagrangean decomposition is 
applied in such a way that constraints R2 do not appear in the first 
subproblem and constraints Rl do not appear in the second subproblem. 
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Regarding Lagrangean relaxation, Cornuejols et al. (1991, Theorem 1) show 
that 

ZBI < ZI < ZT < Z < Z __ c_ c_ , 

ZI ::; ZD ::; Zc , 

ZBI < ZB < Z . _ C _ D 

(1) 

(2) 

(3) 

Furthermore, they provide instances showing that all the inequalities above 
can be strict. The subproblem corresponding to ZD can be converted to 
a knapsack problem and is solvable in pseudo-polynomial time. Therefore, 
bounds inferior to ZD seem not to be interesting. Furthermore, as compu­
tational experiments show, Z'{; is usually not stronger than Z D. This leaves 
ZD and Zc as candidate bounds. 

With respect to Lagrangean decomposition, Cornuejols et al. (1991, The­
orem 2) proof that 

ZC/D = ZC/DB = ZC/DT = ZC/DBT = Zc, 

max{ Z,{;, ZD} ::; ZD/TC ::; Zc, 

ZD/BC = ZD/TBC = ZTD/BC = ZD. 

(4) 

(5) 

(6) 

Since Lagrangean decomposition requires to solve two subproblems in each 
iteration and to optimize a large number of multipliers, Lagrangean decom­
position should give a bound which is at least as strong as ZD. The only 
remaining interesting bound is, therefore, ZD/TC. As shown by Chen and 
Guignard (1998), the bound ZD/TC is also obtainable by means of a tech­
nique called Lagrangean substitution, which substitutes the copy constraints 
x = x' by Ek dkXkj = Ek dkxkj · Compared to the Lagrangean decomposi­
tion, this reduces the number of dual variables from IKI·IJI + IJI to 21JI. 

In summary, interesting Lagrangean bounds for the CFLP are Z D, Zc, 
and ZD/TC. Compared to Zc, the computation ofthe bound ZD/TC requires 
to optimize an increased number of dual variables. Furthermore, one of the 
subproblems corresponding to ZD/TC is an Uncapacitated Facility Location 
Problem (UFLP) while the subproblem corresponding to Zc is an Aggregate 
Capacitated Plant Location Problem (APLP). Since the bound ZD/TC is 
no stronger than Zc and since an APLP is often not much harder to solve 
than an UFLP, the bound ZD/TC seems not to be more attractive than Zc. 
Compared to ZD, the computation of the bound Zc requires to repeatedly 
solve a strictly NP-hard subproblem, while the subproblem corresponding 
to ZD is decomposable and solvable in pseudo-polynomial time. The column 
generation and branch-and-price procedure described in the following sections 
is, therefore, based on the Lagrangean relaxation of the demand constraints 
(D). 
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3 Column Generation Method 

In the following subsections, the employed column generation scheme is de­
scribed in detail. As shown in Section 3.1 the approach is based on relaxing 
the demand constraints (D) in a Lagrangean manner. Due to convergence 
problems of standard Dantzig-Wolfe decomposition, methods for improving 
convergence are required in order to solve the master problem efficiently. 
These methods are explained in Section 3.2. Finally, the branch-and-price 
algorithm for computing optimal solutions is outlined in Section 3.3. 

3.1 Master Problem and Pricing Subproblem 

Consider the mathematical formulation of the CFLP given by (0), (D), (C), 
(T), (B), (N) and (I). Dualizing constraints (D) with multipliers "1k, k E K, 
gives the Lagrangean subproblem 

ZD("1) = L "1k + min L L(Ckj - "1k)Xkj + L !jYj 
kEK X,Y kEK jEJ jEJ (7) 

s.t.: (C), (N), (I), (B), (T). 

It is easy to show, that optimal Lagrangean multipliers "1opt can be found in 
the interval ["1rnin, "1rnax], where 

"1kin = mini Ckj : j E J \ {j(k)}} ~ 0, Ckj(k) = %i:Jckj , "1kax = %ayckj. 

Furthermore, it is well-known that (7) can be reduced to a knapsack problem 
(see, e. ,g., Sridharan (1993)). To this end, define 

Vj = m:x{ L ("1k - Ckj)Xkj : L dkXkj :::; Sj , 0:::; Xkj :::; 1 V k E K} (8) 
kEK kEK 

in order to obtain 
ZD("1) = "10 + L "1k , 

kEK 

where 

"10 = min{L(h - Vj)Yj : L SjYj ~ d(K), Yj E {O, 1} V j E J} . (9) 
Y jEJ jEJ 

In (8) and (9) constraints (B) are taken into account by setting Xij = 0 if 
Yj = 0 holds in an optimal solution to (9). 

The Lagrangean dual of (7) is to maximize the Lagrangean function ZD("1) 
over the set ["1rnin, "1rnax]. Let {yt : t E TY} denote the finite set of all feasible 
solutions to the knapsack problem (9) and let {X) : t E T/} denote the 
vertices of the set of feasible solutions to (8). For t E TY and t E ~x, define 

Ft = Lhy} and 
jEJ 

e tj = L CkjXL· 
kEK 
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Using these definitions and (8) as well as (9), the Lagrangean dual can be 
written as the linear program: 

ZD = max 'TJo + L'TJk 
kEK 

S.t. 'TJo + LyjVj :::; Ft , 
jEJ 

L xtj'TJk - Vj :::; Ctj , 
kEK 

Vj :2: 0, 

'I1min < '11 < 'I1max ',k _ ·,k _ ',k , 

'TJo E~. 

Vt E TY 

VjEJ, VtET/ 

VjEJ 

VkEK 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

Taking the dual of the above "dual master program" one obtains the so-called 
"primal master program" , which is given by: 

ZD = min L Ftat + L L Ctj !3tj + L ('TJ/:,ax15k - 'TJ/:,inEk ) (16) 
tE'TY jEJ tETt kEK 

s.t. L at = 1, (17) 

L y;at - L !3tj :2: 0, V j E J (18) 
tETY tET? 

L L xtj !3tj + 15k - Ek :2: 1, V k E K (19) 
jEJ tETt 

at :2: 0, V t E TY (20) 

f3tj :2: 0, V j E J, V t E T/ (21) 

15k, Ek :2: 0, V k E K, (22) 

where the variables at, !3tj as well as Ek and 15k are the dual variables of the 
constraints (11), (12) and (14), respectively. 

If the constraints (20) and (21) are replaced by at E {O, I} Vt E TY 
and !3tj E {O, I} V j E J and V t E ~x, an equivalent formulation of the 
CFLP is obtained: The problem consists in selecting exactly one plant subset 
st = {j E J : y} = I}, t E TY, with sufficient capacity and in choosing 
feasible flows x}, t E ~x, from plants to customers in such a way that total 
costs are minimized, each customer's demand is met (constraints (19)) and 
that there are no flows from closed plants to customers (constraints (18)). The 
primal master program (16)-(22) is the linear relaxation of this equivalent 
integer reformulation. 

The primal master program (16)-(22) has to be solved by means of column 
generation. To this end consider the master problem restricted to known 
column subsets T' c TY and T; c ~x for all j E J. Furthermore let fio, 'il, 
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and 'fi denote an optimal dual solution of the restricted master problem. New 
columns xj and yh price out, if 

Vj < L)'fik-Ckj)XZj ->... - < (-) def { " (- ) t .. t E "J.x} -,- Vj Vj 'fJ = max ~ rlk -ekj Xkj '" 
kEK kEK 

and 

'fio > L(fj - Vj)yj ~ 'fio > min{L(fj - Vj)Y} : t E TY} . 
jEJ jEJ 

Since Vj(fi) ~ Vj V j E J, using Vj(fi) instead of v in order to price out 
columns yh is generally preferable; it leads to an earlier detection of required 
columns yh. 

For large instances of the CFLP even the restricted master problem is 
usually quite large, and the effort required for iteratively (re-)optimizing the 
restricted master problem can be tremendous. In addition it is well known 
that the conventional Danztig-Wolfe decomposition approach suffers from 
bad convergence behavior (see e.g. Lemarechal (1989)). Methods for stabi­
lizing the decomposition and reducing the computational effort required are, 
therefore, essential in order to solve the master problem (16)-(22) efficiently. 

3.2 Stabilizing the Column Generation 

When Lagrangean relaxation is applied to a general mixed-integer program­
ming problem min{cx : Ax = b, x E X}, the Lagrangean dual is to maxi­
mize the piecewise linear and concave function 

v(u) = ub+min{ (c-uA)x : x E X} = ub+min{ (e-uA)xt : t E T}, (23) 

where {xt : t E T} is the set of all vertices of the convex hull of X (for 
simplicity it is assumed that X is nonempty and bounded). For a given known 
subset T C T of columns, the function 

v(u) = ub + min{ (e - uA)xt : t E T} 

is an outer approximation of v(u). The restricted dual and primal master 
problem is then given by 

v(uh ) ~f max v(u) = max{ Uo + ub : Uo + uAxt :::; ext V t E T} (24) 
U uo,u 

=~~~{L(ext)at: L(Axt)at=b, Lat =l}, (25) 
- tET tET tET 

where Uo ~f min{ (e - uA)xt : t E T} and at is the dual variable corre­
sponding to the dual cut Uo + uAxt :::; et for t E T. At each iteration of 
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the standard column generation algorithm (Kelley, 1960; Dantzig and Wolfe, 
1960), the restricted master problem (24) is solved and an optimal solution 
xh of the Lagrangean/pricing subproblem (23) for fixed u = uh is determined. 
The outer approximation 1J( u) is then refined by adding h to the set r of 
columns. In order to improve the convergence behavior of this approach, a 
number of different methods have been proposed in the literature. 

In order to avoid large oscillations of the dual variables u, Marsten et al. 
(1975) put a box centered at the current point, say U h - I , around the dual 
variables u and solve 

The next iterate u h is then found by performing a line search into the direction 
(-h h-I) u -u . 

Du Merle et al. (1999) generalize the boxstep method of Marsten et al. 
They allow the next iterate to lie outside the current box, but penalize vio­
lations of the "box constraints". For these purposes they use the perturbed 
(restricted) dual master program 

max Uo + ub - w+1I"+ - W-1I"-

s.t. Uo + uAxt ::; ext, V t E r 
0- - W- ::; U ::; 0+ + w+ , 

(26) 

w-, w+ 2:: o. 

Du Merle et al. propose different strategies to initialize the parameters 11"+, 
11"-, 0+, 15- and to adapt them in case that an optimal solution uh of (26) 
improves (not improves) the best dual solution found so far or in case that 
uh is dual feasible. 

As Neame et al. (1998) show, the method of du Merle et al. can be viewed 
as a penalty method which subtracts the penalty function 

PI (u) = L max{ 0, 1I"t(Ui - o!), 11"; (15; - Ui)} 
i 

from the outer approximation 1J(u) in order to determine the next point. The 
method of du Merle et al. is, therefore, closely related to bundle methods 
(Lemarechal, 1989; Carraresi et al., 1995; Frangioni and Gallo, 1999) which 
use a quadratic penalty function 

where T > 0 is a "trust" parameter and U h - I the current point. In this case, 
the master program or direction finding problem is a quadratic program. 
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Let v(ub) = max{v(ut ) : t E T} denote the best lower bound found so 
far. Optimal dual variables u are then located in the set 

L = {(uo, u) : Uo + ub - Wo = v(ub) , Uo + u(Axt) + Wt = (ext) V t E T, 

Wo ~ 0, Wt ~ 0 V t E T} . 

Select any point (u3, uh) E L with w3 = u3 +uhb- v(ub) > O. If (u3, uh) is 
dual feasible, that is wf = ext - u3 - uh(Axt) ~ 0 V t E T, then 

v(uh) = min{ ext + uh(b - Axt) : t E T} 
= ext* + uh(b - Axt*) , for some t* E T, 

= wf* + ug + uhb ~ ug + uhb = wg + v(ub) > v(ub) , 

and the best lower bound increases at least by w3. Otherwise, the localization 
set L is reduced by adding a column t* E T \ T which prices out at the 
current point uh . Thus, a method which selects in every iteration such a 
point (u3, uh) E L converges in a finite number of steps to an €-optimal dual 
solution u. 

Interior point decomposition methods choose a point (u3, uh) E L obey­
ing some centrality property. The analytic center cutting plane method (AC­
CPM) (Goffin et al., 1992, 1993) selects the point (u3, uh) which maximizes 
the (dual) potential function 

lJ!(w) = LIn Wt + In Wo 
tET 

over L. This requires to solve the non-linear system 

f.1.o wo=(, f.1.tWt=( VtET, Lf.1.t=f.1.0, Lf.1.t(Axt)=f.1.ob, 
tET tET (27) 

Wo = uo + ub - v(ub) > 0, Wt = ext - uo - u(Axt) > 0 V t E T, 

where ( = 1. If (w8, wh, u3, uh, f.1.3, f.1.h) is a solution to the system above, 
then (u3, uh) and a h = f.1.h / f.1.3 gives a feasible solution to the restricted dual 
master (24) and primal master (25), respectively. 

Instead of computing the analytic center, Gondzio and Sarkissian (1996) 
as well as Martinson and Tind (1999) propose to use points on the central 
path between the analytic center and an optimal solution of the restricted 
master program (24). For these purposes a centrality parameter ( > 0 not 
necessarily equal to 1 is used and iteratively adjusted. Finally, Wentges (1997) 
simply proposes to select the point 

(0 < 'Y S 1) , (28) 

where (ug = v(ub) - ubb, ub) is the best dual solution found so far and 
(u3, uh ) is an optimal solution of the restricted dual master program (24). 
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The parameter 'Y is first set to 1 and declined to a given threshold value in 
subsequent iterations. The convex combination (28) generally does not lie in 
the vicinity of a central path; nevertheless, the method is somehow related 
to interior point methods. 

Van Roy (1983) introduces the cross decomposition method which com­
bines Dantzig-Wolfe decomposition and Benders decomposition, and Van Roy 
(1986) uses this method to compute the bound Zc for the CFLP. In order 
to avoid the need of solving a master problem in every iteration, the cross 
decomposition procedure obtains new dual iterates u h from dual solutions to 
the primal subproblem, where integer variables are kept fixed, and generates 
new primal solutions x by solving the Lagrangean subproblem. When a con­
vergence test indicates that convergence can no longer be expected, a master 
problem has to be solved in order to enforce convergence. Since subproblems 
are often easier to solve than master problems, a reduction in computational 
efforts is expected. If the primal subproblem does, however, not produce good 
dual information, the cross decomposition procedure may neither yield a re­
duced number of calls to the oracle nor a reduced number of master problems 
solved compared to a (stabilized) Dantzig-Wolfe decomposition method. 

Last but not least, subgradient optimization and Dantzig-Wolfe decom­
position can be combined in various ways in order to improve convergence. 
Guignard and Zhu (1994) use a two-phase method, which takes an optimal 
solution of the restricted dual master program (24) as next iterate only if 
subgradient steps fail to generate new columns for a given number of subse­
quent iterations. The restricted master is solved in every iteration in order 
to use the objective value maxu v(u) as (improved) estimator of maxu v(u) 
in a commonly used step length formula. 

Compared to Dantzig-Wolfe decomposition, bundle methods and interior 
point decomposition methods like ACCPM usually succeed in significantly 
decreasing the required number of calls to the oracle, that is the pricing 
subproblem. However, in case of large master programs and the addition of 
multiple columns in each iteration, the computational effort required for com­
puting the next dual iterates can be substantial (in case of bundle methods a 
quadratic program needs to be solved; interior point methods (re-) solve the 
nonlinear system (27) by means of Newton methods). Such methods seem, 
therefore, to be suitable in case of a difficult subproblem and a relatively 
small master program. In case of the CFLP and the bound ZD, however, 
even the restricted master program is usually quite large, while the pricing 
subproblem is relatively easy to solve. In order to solve the master program 
(16)-(22) it seems, therefore, more adequate to use a method which reduces 
the necessary number of calls to the master program even at the expense of 
an increased number of calls to the oracle. This can be achieved by means of 
mixing subgradient optimization and the weighted Dantzig-Wolfe decompo­
sition approach: 
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- Good approximations of optimal multipliers 'f/ are quickly found by means 
of subgradient optimization. Furthermore, subsets of different columns yt 
(t E 'TV) and x} (t E 1/) generated during subgradient optimization can 
be stored and used to initialize the restricted master program. 

- The weighted decomposition scheme usually significantly improves con­
vergence of Dantzig-Wolfe decomposition. Furthermore, the method is 
easy to use and "just" requires to reoptimize a linear program. In case 
that the dual prices u h obtained from the convex combination (28) are 
dual feasible, the best lower bound v(ub ) found so far increases by 'Y(ug­
v( ub)). This gives the chance for further improvements in the current 
best lower bound if the parameter 'Y is increased in small steps until new 
columns price out at the current dual prices given by the optimal dual 
solution (ug, uh ) of the master program. Such a line search into the di­
rection of uh is feasible from a computational point of view only if the 
pricing subproblem is relatively easy to solve. 

- Since the weighted decomposition as well as interior point methods may 
give feasible dual points, convergence can slow down at the end of the 
procedure if no additional columns are generated and the lower bound is 
already close to the optimum. Some intermediate additional subgradient 
steps may, however, help to overcome this situation. In our implementa­
tion, a limited number of intermediate subgradient steps are, therefore, 
performed in case that the next dual iterate obtained by the convex com­
bination (28) is not dual feasible. During this intermediate subgradient 
phase, columns which price out at the dual prices given by the optimal 
dual solution to the master program are added. 

- Furthermore, simple heuristics are used during and at the end of the 
column generation for determining (improved) feasible solutions for the 
CFLP. Columns from improved feasible solutions are added the master 
program. This guarantees that the objective function value of the re­
stricted master program is no larger than the objective function value 
of a feasible solution for the CFLP. Finally, simple Lagrangean probing 
methods are employed in order to fix binary variables Yj if possible. 

The column generation procedure employed for solving the master program 
(16)-(22) can be summarized as follows: 

Column generation procedure 

Phase 1 (subgradient phase) 
Y rrx· -Step 0: Set h = 0, I = , j = 0 \;/J E J, IE = 0, UB = 00, ZD = 00, (Th = 2, 

and 'f/h = 'f/min . 

Step 1: Solve the pricing subproblem (7) for 'f/ = 'f/h. Let (yh, xh) denote the 
corresponding solution and let vh, 'f/g = Z D ('f/h) - EkEK 'f/~ denote the values 
of v and 'f/o corresponding to 'f/h. Set 0 = {j E J : yj = 1}. If ZD('f/h) > IE, 
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then set: 

Otherwise, half (jh if the lower bound has not improved for a given number 
H* of subsequent steps (e. g. H* = 10). If (min {Z D, UB} - IE) / IE ::; €, go 
to Step 11. 

-;r1Y -;r1Y ;:rX;:rX 
Step 2: Set r := r U {h} and I j := I j U {h} V j E O. 

Step 3: Solve the transportation problem with plant set O. If this gives a 
solution improving UB, update UB and record the solution in (yB, xB). 

Step 4: Set 1]Z+l = max{1]k'in, min{1]k'ax, 1]~ + (hgh} } V k E K, where 

g~ = 1- LXZj and (h = (jh(UB - ZD(1]h))/llghI12. 
jEJ 

Set h := h + 1. If h exceeds the iteration limit H (e. g. H = 100), go to Step 5, 
else go to Step 1. 

Step 5: For each j E J compute 

Pj = mJn{L(JI-vnYI : L SIYI ~ d(K), Yj = l-yj, Yl E {a, I} V 1 E J} . 
IEJ IEJ 

If UB ::; L:kEK 1]~ + Pj, then fix variable Yj to value yj. If any (additional) 
binary variable could be fixed this way, recompute 1]min, 1]max and perform 
some additional subgradient steps, that is set e. g. H := H + 5 and go to 
step 1. Otherwise, continue with Step 6. 

Phase 2 (column generation phase) 

Step 6: Initialize the primal master problem with columns {yt 
{X) : t E r;'} for which 

-y 
: t E r } and 

(1 - E)Ft ::; 1]~ + L vjy} and (1 - E)Ctj ::; L 1]~XL - vj (29) 
jEJ kEK 

holds, using e. g., E = 0.01. Add columns {yB} and {xf : yf = I} from the 
feasible solution to the master problem. 

Step 7: Solve the primal master problem (16)-(22) and obtain an optimal 
dual solution (fjo, fj, v) with objective value ZD. Remove all columns from 
the master which have been nonbasic for a certain number of subsequent 
iterations. If (Z D - IE) / IE ::; r::, go to Step 11. Otherwise, set h := h + 1, 
1]h = ,fj + (1 - ,)1]b, where a < , < 1, and go to Step 8. 

Step 8: Solve the subproblem as in Step 1. If columns {yh} or {xn price out 
at the current dual prices (fjo, fj, v), add them to the master problem and go 
to Step 9. Otherwise, go to Step 10. 
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Step 9: Apply a limited number ':)'H of additional subgradient steps, that 
is repeat Step 3, Step 4 and Step 1 ':)'H times in this order. During this 
intermediate subgradient phase, add all columns which price out at the cur­
rent dual prices (71o, 71, v) to the master problem. Furthermore, apply Step 5 
whenever an improved feasible solution (yB, xB) is found. Return to Step 7 
after completion of this intermediate subgradient phase. 

Step 10: As long as no column prices out at the current dual prices (71o, 71, v), 
increase 'Y in small steps and repeat Step 1 and Step 3 with TJh = 'Y71+ (1-'Y )TJb. 
During this "line search" also apply Step 5 whenever an improved feasible 
solution is found. Afterwards, go to Step 7. 

Step 11: Let (y, x) denote the computed optimal solution to the master prob­
lem in terms of the original variables. Sort y in decreasing order and open 
plants j in this order as long as total capacity is insufficient or Yj exceeds a 
given threshold value, e. g. 0.75. If this way a solution improving UB is found, 
update UB and record the solution in (yB, x B). 

In order to further explain some of the above steps, it is appropriate to 
comment on the following points: 

- The knapsack problems (9) were solved by means of the COMBO algo­
rithm of Martello et al. (1999). 

- The step size strategy employed in phase 1 is proposed in Ryu and Guig­
nard (1992). 

- The tolerance c in Step 1 and Step 7 was set equal to 1/(215 - 1). 
- The restricted master becomes too large, if all different columns generated 

during the subgradient phase are added. Since (TJS, TJb, vb) approximates 
an optimal solution of the dual master, it is expected that columns not 
meeting the selection criterion (29) will be nonbasic. 

- In order to limit the size of the master problem, inactive columns have to 
be removed (Step 7). This reduces the computation time required for each 
master problem and generally increases the number of master problems 
to be solved. In our implementation, columns are removed, if they are 
inactive for 5 subsequent iterations. 

- The parameter 'Y was set to a value of 0.2 for smaller test problems and 
to a value of 0.05 for larger problem instances. In Step 10, the parameter 
'Y is incremented in steps of 0.05. 

- The number ':)'H of intermediate subgradient steps in Step 9 was set 
to 10. Compared to an application of the procedure without the use of 
intermediate subgradient steps, this halfed the required computation time 
for some of the larger test problems, although the number of calls to the 
oracle increased. 

- Whenever an improved feasible solution (yB, xB) is found during the 
column generation phase, columns x? (j E J) which price out at the 
current dual prices (71o, 71, v) are added to the master program. 
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3.3 Branch-and-Price Procedure 

Let (a, -p) denote the optimal solution to the master problem (16)-(22) com­
puted by means of the column generation procedure described above. The 
corresponding solution (y, x) in terms of the variables of the original prob­
lem formulation is then given by 

If Y is integral (which means that a is integral), an optimal solution to the 
CFLP is reached. Otherwise, the column generation procedure has to be 
combined with an implicit enumeration method in order to obtain optimal 
solutions. 

If at least one Yj is fractional, possible branching strategies are to branch 
on single variables Yj with Yj E (0,1) or to branch on more complex con­
straints involving variables Yj. The simplest branching strategy is to re­
quire Yj = 0 on the "left" branch and to fix Yj to 1 on the "right" branch. 
This branching rule is relatively easy to implement. If Yj is fixed to a value 
8j E {O, I}, all present columns yt with yj = 1 - 8j have to be removed 
from the master problem. Furthermore, it is easy to enforce the branching 
constraint Yj = 8j in the pricing subproblem (7). 

Branching on single variables Yj may have, however, disadvantages. The 
master problem (16)-(22) is usually degenerated and possesses multiple op­
timal solutions. It is, therefore, likely that there will be only a small progress 
in the lower bound if a branch on a single variable is performed. This may 
be avoided by means of branching on subsets of variables Yj. If S c J is such 
that 0 < 2:jEs Yj < 1, it is possible to branch by introducing the pair of 
branching constraints 

LYj ~ 1 and Yj = 0 V j E S. 
jES 

In our implementation the set S is determined by sorting Y in non-decreasing 
order and including in this order plants j E J into the set S until 2:jEs Yj ~ 
0.5. The branching constraint Yj = 0 V j E J is easy to handle; it just 
requires to exclude plants j E S from consideration. However, the branching 
constraint 

LYj ~ 1 {:} L (Ly;)at ~ 1 (30) 
jES tETY jES 

has to be added explicitly to the master problem. Each branching constraint 
of the type (30) contributes then to an additional dual variable, and the 
reduced costs of columns as well as the objective function of the pricing 
subproblem has to be adjusted accordingly. The general structure of the 
pricing subproblem is, however, not changed. 
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The branching rule suggested above is unbalanced in the sense that the 
constraint Yj = 0 \:j j E S is usually more restrictive than the constraint 
EjEs Yj ~ 1. One can expect that a branch with Yj fixed to zero for all 
j E S can be pruned quickly. In some sense, the above branching rule aims 
at generating an inequality of the type (30) which cuts off the fractional 
solution (y, x) and cannot be violated by an optimal solution to the CFLP. 
A possible drawback of this approach is that after the addition of several 
such constraints, the progress in the lower bound gets smaller and smaller. 

The algorithm keeps a list of generated and processed subproblems (nodes 
of the enumeration tree) that were not fathomed. If this list is empty, opti­
mality of the best feasible solution found is proved. Otherwise, the pending 
node with the smallest corresponding lower bound is selected for branching 
purposes. 

In order to generate a subproblem, the following information is extracted 
from the father node. First the solution to the current master problem gives 
all active columns, which are stored together with an optimal basis. Further­
more, it is necessary to keep track of the best dual solution for the master 
problem; this information is required for performing steps of the weighted de­
composition. After a node of the enumeration tree is selected, the branching 
constraint is added by deletion of the infeasible columns respective genera­
tion and addition of the new row EjEs Yj ~ 1. The storage requirements of 
this enumeration strategy are large; however, a "best-first" search strategy 
does usually contribute to a faster increase in the global lower bound than, 
for example, a depth-first search strategy. 

4 Computational Results 

The proposed branch-and-price procedure was coded in Sun Pascal and run 
on a Sun Ultra (300 MHz) to solve several test problems, which were gener­
ated according to the proposal of Cornuejols et al. (1991). Test problems for 
the CFLP generated this way are usually harder to solve than other problems 
of the same size. The test problems are divided into three different sets of 
problems which differ according to their tightness (ratio r = Ej sj/d(K) of 
total capacity and total demand). We used capacity tightness indices r of 
3, 5 and 10, respectively. In each problem set, there are 5 problem types of 
each of the following sizes: 100 x 100, 200 x 100, 200 x 200, 500 x 100, and 
500 x 200 where the first number is the number of customers and the sec­
ond is the number of potential plant locations. Five problem instances have 
been generated for each given size and tightness index r. The transportation 
problems and the linear master problems arising in the computations of the 
bounds were solved by means of the procedures CPXnetopt() and CPXpri­
mopt() contained in CPLEX's (1997) callable library (version 5.0). 

In a first set of computational experiments, the computational effort re­
quired by the suggested column generation procedure was compared to the 
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Table!. LP relaxation solved using CPLEX 

Size SLP% LP% UB% TSLP TLP TH 
r = L:j sdd(K) = 3 

100x100 0.33 0.11 0.33 0.6 2.3 0.8 
200x 100 0.34 0.27 0.16 3.0 5.9 1.2 
200x200 0.12 0.08 0.69 5.8 13.9 2.6 
500x 100 0.44 0.41 0.70 27.7 63.4 13.5 
500x200 0.18 0.17 0.32 28.0 38.7 6.7 

max 0.70 0.61 2.01 31.1 128.533.3 
mean 0.28 0.21 0.44 13.0 24.8 5.0 

r = L:j sdd(K) = 5 
100x100 0.65 0.43 0.34 0.8 3.9 0.8 
200x 100 0.56 0.46 0.56 7.0 23.0 4.2 
200x200 0.18 0.17 0.38 8.1 12.4 1.6 
500x100 0.55 0.48 0.64 99.3 162.813.9 
500x200 0.42 0.40 0.85108.3 163.010.9 

max 1.05 0.70 1.40 130.0 203.819.6 
mean 0.47 0.39 0.55 44.7 73.0 6.3 

r = L:j sj/d(K) = 10 
100x 100 1.02 0.62 0.14 1.5 5.5 0.5 
200x 100 0.53 0.41 0.55 30.7 65.0 4.5 
200x200 0.54 0.40 0.76 12.0 34.6 2.2 
500x 100 0.25 0.22 0.15330.0 486.618.1 
500x200 0.47 0.43 0.85 607.4 935.1 27.7 

max 1.45 1.14 2.16 657.8 1138.2 50.6 
mean 0.56 0.42 0.49196.3 305.4 10.6 

Total 
max 1.45 1.14 2.16657.8 1138.2 50.6 
mean 0.44 0.34 0.49 84.7 134.4 7.3 

effort required to solve the LP relaxation of the original problem formula­
tion by means of a common linear programming software (CPLEX). This LP 
relaxation was solved in the following way: In a first step, the weak LP relax­
ation given by (0), (D), (C) and (N) is solved. Afterwards, violated implied 
bounds (B) are added until the strong LP relaxation is solved. Finally, in a 
third step, the LP relaxation was further strengthened by means of adding 
lifted cover inequalities, odd hole inequalities, flow cover inequalities and 
other submodular inequalities proposed by Aardal et al. (1995). In addition, 
simple rounding heuristics were applied in order to compute feasible solutions 
for the CFLP. Table 1 shows the results obtained with this procedure (aver­
ages over the five instances of each problem type). In Table 1, SLP% and LP% 
denote the percentage gap between the optimum value Z of the CFLP and 
the strong LP-bound ZI and the computed LP-bound, respectively; UB% is 
the percentage deviation of the solution computed by the rounding heuris-
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Table2. Results column generation procedure 

Size LB% UB% ItLR ItM COlA COIToI T LR TH TM TToI 

r = I:j sjfd(K) = 3 
100x100 0.05 0.00 183 11 239 518 0.8 0.3 0.4 1.7 
200x 100 0.23 0.00 232 25 418 807 1.6 1.2 1.0 4.0 
200x200 0.05 0.00 220 18 370 896 2.8 1.7 1.5 6.3 
500x 100 0.40 0.27 575 561115 2618 12.2 11.5 28.6 52.8 
500x200 0.16 0.02 300 24 984 2139 8.917.0 9.9 36.7 

max 0.65 0.70 636 62 1210 2749 13.023.6 33.6 58.9 
mean 0.18 0.06 302 27 625 1396 5.3 6.3 8.3 20.3 

r = I:j sjfd(K) = 5 
100x 100 0.19 0.06 206 12 285 523 0.9 0.2 0.4 1.6 
200x 100 0.44 0.26 395 53 404 925 3.3 1.8 3.0 8.4 
200x200 0.12 0.06 217 18 410 821 3.0 1.8 1.1 6.5 
500x100 0.55 0.88 9151001062 3091 19.7 18.6 99.3138.4 
500x200 0.40 0.37 631 68 1087 2772 25.7 21.2 39.6 87.6 

max 0.73 1.95 1109 129 1196 331430.5 28.9 146.7 180.2 
mean 0.34 0.33 473 50 649 162710.5 8.7 28.7 48.5 

r = I:j sjfd(K) = 10 
100x100 0.23 0.00 323 26 253 585 0.8 0.1 0.9 1.9 
200x 100 0.46 0.34 473 55 300 953 4.0 1.8 7.1 13.0 
200x200 0.21 0.00 364 44 472 935 3.5 0.8 1.9 6.5 
500x 100 0.24 0.19 1003 105 948 3188 16.5 29.8 190.3 237.5 
500x200 0.47 1.09 901 91 1123 331242.135.5172.3251.7 

max 0.75 1.50 1450 171 1246 3961 56.1 50.3 271.2 321.3 
mean 0.32 0.32 613 64 619 1795 13.4 13.6 74.5 102.1 

Total 
max 0.75 1.95 1450 171 1246 3961 56.1 50.3 271.2 321.3 

mean 0.28 0.24 463 47 631 1606 9.7 9.6 37.2 57.0 

tic from optimality; T SLP, T LP, and T H are the times in seconds required to 
compute the strong LP-bound, the LP-bound, and heuristic solutions. 

Table 2 gives information about the computational effort required to solve 
the master problem (16)-(22) by means of the proposed column generation 
procedure. In this table, ItLR and ItM denotes the number of subproblems 
and master problems solved, respectively; COlA is the number of columns in 
the last master problem, and ColTot is the total number of columns gener­
ated; T LR, T H, and T M denote the computation times in seconds required 
for solving the subproblems, the transportation problems and the master 
problems, respectively; T Tot is the total computation time in seconds; LB% 
and UB% denote the percentage deviation of the computed bound ZD and 
heuristic solution from optimality, respectively. Table 2 shows that the num­
ber ItLR of pricing subproblems solved is large compared to the number T M 

of master problems solved: The procedure tries to avoid the relatively large 
master problem at the expense of an increased number of calls to the or-



20

acle. The computation times were, however, out of the scope, if instead of 
a weighted decomposition approach standard Dantzig-Wolfe decomposition 
was used (which means to set the parameter 'Y in (28) to a value of 1). 
We also experimented with the stabilization method proposed by du Merle 
et al. (1999), using the same subgradient procedure in order to obtain a good 
guess for optimal multipliers. The computation times were, however, signifi­
cantly larger than those obtained by means of the proposed column genera­
tion scheme. Compared to the lower bound produced by the linear program­
ming approach (column LP% in Table 1), the bound ZD is on average better 
than this LP-bound. Furthermore, the proposed column generation method 
consumes less computation time than the computation of a bound based on 
the linear relaxation and additional cutting planes (compare columns T Tot in 
Table 2 and T LP in Table 1). For larger problems with a capacity tightness of 
5 and 10 the column generation procedure even consumed less computation 
time than the computation of the strong LP-bound ZI by means of a simplex 
algorithm (compare columns T Tot in Table 2 and T SLP in Table 1). This in­
dicates that this bounding procedure should be useful in the framework of a 
branch-and-price procedure for solving larger problem instances; it provides 
strong bounds in relatively short computation times and, in contrast to sub­
gradient optimization, also a fractional primal solution on which branching 
decisions can be based. 

In a second set of computational experiments the branch-and-price pro­
cedure described in Section 3.3 was used to compute optimal solutions. The 
method was also compared to two other exact solution procedures. The code 
of the branch-and-price procedure is, however, still under development. Fur­
thermore, comparing different exact optimization procedures on large prob­
lem instances is very time-consuming. We are, therefore, only able to show 
preliminary results on some selected test problems. 

The first method used for computing optimal solutions is the CAPLOC 
algorithm of Ryu and Guignard (1992). CAPLOC is a depth-first search 
branch-and-bound procedure based on ZD and subgradient optimization. Be­
fore branching at the top node, however, CAPLOC tries to fix as many y 
variables as possible by means of extensive Lagrangean probing. The second 
alternative exact solution approach just consists in solving the LP relaxation 
of the original formulation in the way described above and in passing the 
problem together with the generated cuts and the computed feasible solu­
tion to CPLEX's MIP optimizer. Table 3 compares the results obtained with 
CAPLOC and CPLEX for some selected test problems. In this table, the 
numbers in the column headed Problem show the number of customers, the 
number of potential plant sites, the capacity tightness index r and the num­
ber of the problem instance. Nodes is the number of nodes checked and T Tot 

the total CPU time in seconds. Furthermore, Iter and # TPs denotes the num­
ber of subgradient steps performed as well as the number of transportation 
problems solved by CAPLOC. As can be seen from Table 3, the CAPLOC al­
gorithm clearly outperforms CPLEX for the test problems shown. (Although 
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Table3. Results obtained by means of CAPLOC and CPLEX 

CAPLOC CPLEX 
Problem Nodes Iter #TPs TTot Nodes TTot 
100x100-3-1 103 274 16 1.1 9 5.2 
100x 100-3-2 106 397 35 1.8 182 24.8 
100x 100-3-3 113 500 18 1.4 248 25.3 
100x100-3-4 131 767 23 2.0 103 8.9 
100x100-3-5 125 793 38 2.4 103 11.8 
max 131 793 38 2.4 248 25.3 
mean 116 546 26 1.7 129 15.2 
100 x 100-5-1 133 703 32 1.9 548 55.6 
100 x 100-5-2 106 398 24 1.4 33 10.5 
100x100-5-3 154 1264 77 3.6 325 45.1 
100x 100-5-4 293 1643 101 4.9 750 121.4 
100 x 100-5-5 252 1684 94 4.2 178 25.7 
max 293 1684 101 4.9 750 121.4 
mean 188 1138 66 3.2 367 51.7 
100x100-10-1 103 257 10 1.1 9 10.6 
100 x 100-10-2 102 248 13 1.1 89 12.9 
100x100-10-3 118 498 22 1.5 214 31.0 
100x100-10-4 139 800 31 1.9 120 23.1 
100x100-10-5 102 247 12 1.1 6 10.6 
max 139 800 31 1.9 214 31.0 
mean 113 410 18 1.4 88 17.6 
200 x 200-3-1 260 1123 42 14.1 1146 382.7 
200 x 200-3-2 206 558 41 9.8 1559 779.0 
200 x 200-3-3 359017704 731 190.4 30192066.9 
200 x 200-3-4 275 1138 34 13.8 1915 1185.4 
200 x 200-3-5 1158 6528 358 78.8 524 429.9 
max 359017704 731190.4 30192066.9 
mean 1098 5410 241 61.4 1633 968.8 
200 x 200-5-1 426 2294 212 29.1 1555 774.7 
200x200-5-2 871 5069 595 65.1 2221 1208.3 
200 x 200-5-3 351 1662 100 20.1 578 313.1 
200x200-5-5 200 318 39 8.0 40 38.9 
max 871 5069 595 65.1 22211208.3 
mean 462 2336 237 30.6 1099 583.7 
200x200-10-1 495 3132 225 29.4 14591055.4 
200x200-10-2 205 463 37 8.3 8501355.9 
200 x 200-10-3 228 841 75 12.6 731 421.6 
200 x 200-10-4 523 3085 194 28.0 1413 798.1 
200x200-10-5 204 460 43 9.7 8321428.4 
max 523 3132 225 29.4 1459 1428.4 
mean 331 1596 115 17.6 10571011.9 

Total Total 
max 359017704 731 190.4 30192066.9 
mean 384 1906 117 19.3 729 441.5 


