Band 252 02/19

Influence of smear and compaction zones on the performance of stone columns in lacustrine clay

Jean Nicolas François-Xavier Gautray

Weitere aktuelle vdf-Publikationen finden Sie in unserem **Webshop**:

vdf.ch

- Bauwesen
- Naturwissenschaften, Umwelt und Technik
- Informatik, Wirtschaftsinformatik und Mathematik
- >Wirtschaft
- Geistes- und Sozialwissenschaften, Interdisziplinäres, Militärwissenschaft, Politik, Recht

Gerne informieren wir Sie regelmässig per E-Mail über unsere Neuerscheinungen.

Newsletter abonnieren

Anmeldung auf vdf.ch

@vdfVerlagETHZ

Influence of smear and compaction zones on the performance of stone columns in lacustrine clay

Jean Nicolas François-Xavier Gautray

Veröffentlichungen des Instituts für Geotechnik (IGT) der ETH Zürich Band 252, Februar 2019

ETH-Dissertation Nr. 22107 © 2019, vdf Hochschulverlag AG an der ETH Zürich

ISBN: 978-3-7281-3797-5 (Printversion) ISBN: 978-3-7281-3798-2 (E-Book) DOI-Nr.: 10.3218/3798-2

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

À et grâce à mon père

Foreword

Construction on soft soils is always accompanied by the risk of significant, time-dependent settlement and bearing capacity failure. As technical knowledge has advanced, optimised ground improvement has offered significant economic advantages in reducing net settlement and resisting failure by installation of more flexible and cost-effective stone columns or sand compaction piles in the ground, rather than more rigid inclusions, such as steel or concrete piles. The stiffness and strength of the subsoil around the columns is greater, and the consolidation time is reduced through shorter (radial) drainage paths.

More sophisticated, time-dependent analysis of the settlement response and assessment of the bearing capacity of the improved ground under vertical loading from stiff footings is essential. Prediction of post-construction settlements must be made to guarantee the serviceability limit state of the footing in the long-term. This research has investigated the system response in terms of load transfer from the footing into the stone columns, combined with consideration of the micromechanical effects in the smear and compaction zones around the columnar inclusion, as well as the resistance to failure of the stone column itself through shear, bending, barrelling, punching or spreading.

Physical and numerical modelling has been conducted on a soil-footing system, initially as a single unit cell and subsequently as an entire group of stone columns, beginning with installation of the stone columns through to loading by a rigid footing. The interaction between the various elements, the stress concentration in the stone columns and the transfer of load within the stiffer stone inclusions and the surrounding soft soil have been presented and discussed. A unique focus of this work has been the identification of various forms of failure in embankments, underlying soil and columns, as well as the load transfer through arching within an embankment over soft soil and onto stiffer inclusions.

Physical modelling was conducted in the well-established ETH Zurich Geotechnical Drum Centrifuge, combining existing geotechnical techniques with micromechanical analyses (using mercury porosimetry and environmental scanning electron microscopy) into the alignment of particles, the change in porosity and density of the clay immediately adjacent to the column. An electrical impedance needle was developed and commissioned to investigate whether changes in impedance in the smear and compaction zone around the stone columns could be determined through re-alignment of the clay minerals in the former or changes in void ratio in the latter. Although the findings in this research were mainly limited to the compaction zone, realignment of the clay minerals seemed to extend from the shear zone into the compaction zone. This novel information should impact on future design.

Both axisymmetric (single column) and innovative three-dimensional finite element analysis (five stone column group) were carried out, including a wished-in-place approach with reduced stiffness in the smear zone. The load-settlement behaviour of composite foundations using stone columns in soft clays was well predicted. This has revealed some interesting interactions

and added further insight into the mechanisms derived from the physical modelling and experimental techniques. For example, it became clear that the stress concentration reduced so much with depth that the stone column dimensions could be optimised in terms of reduced diameter and/or length for this particular case of load bearing capacity.

Dr. sc. ETH Zürich Jean Gautray has made a valuable scientific contribution to the understanding of the zones formed around a stone column during installation and the load capacity of stone columns beneath a footing, which has wide application in practice.

Prof. Dr. Dr. h.c. mult. Sarah M. Springman CBE FREng ETH Zurich Institute for Geotechnical Engineering

Acknowledgements

Many people in my personal and professional environment have helped me over numerous years to become the person I am today, to reach my goals and to achieve this work.

A very special thanks goes of course to my deceased father François Gautray, who was my dad, my best friend and my confident for twenty six years and whose heart decided to let go last fall. He always put me back on track when troubles appeared, gave me everything he could so I got to achieve my goals and not a single word of this thesis would have been written without his help. His inspiration, his advice and his personality shall accompany and help me forever.

My stepmother Catherine Rodier could find the words to teach me how to write properly, to help me learn foreign languages and to bear me when I was a rather complicated kid. She helped me to become a grown-up and has been a true mother at my side at any time for the past seventeen years.

Julia Selberherr has been bringing me sunshine and warmth, this even in the darkest and coldest moments. She has helped me to find new perspectives, has enlightened my world with her smile, and will hopefully continue to do so. My thanks also go to her family, who welcomed me with open arms and offered me a second home.

A requirement for the conduction of a PhD thesis is of course not only a favourable personal situation but also an adequate professional environment.

This is why I would like to thank my supervisor Prof. Dr. Sarah Springman for taking the decision to give me a position in her group and for giving me the opportunity to conduct this research. The benefits from this position over the past four years will surely be helpful in the future.

Dr. Jan Laue was supportive in his role as a co-supervisor by being available and excited about new ideas and suggestions.

The assistance of my second co-supervisor, Prof. Dr. Helmut Schweiger, was decisive in the conduction of the numerical modelling. His availableness during my stays in Graz, Austria, was remarkable and his advice of great value. The help from his assistants Dr. Franz Tschuchnigg and Dr. Bert Schädlich was also very deeply appreciated.

Dr. Michael Plötze was always very helpful and his expertise in the domain of clay mineralogy and of Mercury Intrusion Porosimetry was much esteemed. The expertise of Gabriela Peschke was also of great help in order to obtain high quality Environmental Scanning Electron Microscopy results.

A central part of this work is the modelling of boundary value problems under enhanced gravity using the geotechnical drum centrifuge at the ETH Zürich. Such modelling activities are unthinkable without a highly competent technical staff.

Markus Iten provided his expertise for the management of the geotechnical centrifuge and his good mood, even when having to pop up at 4 o'clock in the morning. None of the tests would have been possible without him.

The help of Heinz Buschor and Andreas Kieper was also absolutely essential for the production of the new centrifuge tools coming out of Dr Jan Laue's and/or of my imagination. Their ability to deliver very high quality products within short time periods was crucial and always deeply appreciated.

Modern techniques always involve more complicated technologies which make the help of an electrical engineering technician of immense value. Ernst Bleiker was always available to help me out with the numerous electrical issues I had during the conduction of my thesis, and his ability to think "out of the box" to find imaginative and effective solutions in order to solve complicated problems within very tight time periods was of invaluable support.

My thanks also go to Dr. Pierre Mayor for his valuable support and good advice.

Eventually, I would like to thank Ralf Herzog, Dr. André Arnold, Frank Fischli, and Dr. Ferney Morales for their good company and nice conversations over the past years, and the other members of the Institute for Geotechnical Engineering, whom I worked with, for their help with professional matters.

Contents

F	orew	ord			V
A	ckno	wledge	eme	nts	VII
С	onte	nts			IX
Li	ist of	figure	s		XVII
Li	st of	tables			XXXVII
A	bstra	ct			XLI
K	urzfa	issung			XLIII
1	Ir	ntroduc	ction		1
	1.1	Motiv	atio	n	1
	1.2	Thes	is la	yout	2
2	S	tate of	the	art of ground improvement with stone columns	5
	2.1	Gene	eral o	considerations about ground improvement	5
	2.2	Obje	ctive	s of ground improvement of soft soils with stone columns	7
	2.3	Cons	truc	tion techniques	8
	2.4	Beari	ng b	behaviour of stone columns submitted to vertical loading	10
	2	.4.1	Bea	aring behaviour	10
	2	.4.2	Str	ess concentration on stone columns	12
	2	.4.3	Ulti	imate Limit State response to vertical load	18
	2.5	Desig	gn of	f stone columns	22
	2	.5.1	Bea	aring capacity	22
		2.5.1	.1	Bulging failure	22
		2.5.1	.2	Shear failure	24
		2.5.1	.3	Penetration of short columns	29
	2	.5.2	Se	ttlement calculation	
		2.5.2	.1	Settlement calculations based on equilibrium considerations	31
		2.5.2	.2	Settlement calculations based on empirical methods	35
	2	.5.3	Со	mparison of the design procedures	44
	2.6	Load	-trar	nsfer behaviour of stone columns	46
	2.7	Load	-trar	nsfer behaviour in inclusion-supported embankments	53
	2.8	Effec	t of :	stone columns on the consolidation time	57
	2.9	Analy	/tica	I considerations about the installation of inclusions in soil	

		2.9.1	Cavity expansion theory	60	
		2.9.2	Strain Path Method and Shallow Strain Path Method	63	
	2.1	2.10 Observations concerning the installation effects of piles and stone columns on the soil			
		on the	e soil	66	
		2.10.1	Pile installation	66	
		2.10.2	Changes of host soil properties due to the installation of stone columns	68	
		2.10.2	2.1 Effect on soil resistance and stress levels	69	
		2.10.2	2.2 Smear and compaction zones: effect on permeability	74	
		2.10.3	Radial drainage around stone columns	84	
	2.1	1 Sumn	nary of the state of the art of ground improvement with stone columns	88	
3	(Centrifu	ge modelling	91	
	3.1	Histor	ical background	91	
	3.2	Princi	ples of centrifuge modelling	92	
	3	3.2.1	Scaling factors	94	
		3.2.2	Advantages and disadvantages of physical modelling under enhanced gravity	94	
	3.3	Centr	ifuge modelling of ground improvement measures	96	
	3.4	Techr	niques adopted	109	
	(3.4.1	ETH Zürich geotechnical drum centrifuge and equipment	109	
	3	3.4.2	Pore pressure transducers (PPTs)	110	
	(3.4.3	Load cells	110	
	(3.4.4	T-Bar penetrometer	111	
	(3.4.5	Electrical impedance needle	113	
	3.5	Mode	l soils	116	
	(3.5.1	Birmensdorf clay	116	
	(3.5.2	Quartz sand	117	
	(3.5.3	Perth sand	118	
	3.6	Soil m	nodel	118	
	3	3.6.1	Preparation of Birmensdorf clay	119	
	(3.6.2	Preparation of a soil model in a cylindrical strongbox	119	
	(3.6.3	Preparation of a soil model in an oedometer container	121	
	(3.6.4	Preparation of a soil model in an adapted oedometer container	124	
	(3.6.5	Installation of the PPTs	124	

125
eter strongbox 125
127
130
rongbox131
G_v6)131
133
container 137
dometer 141
143
143
143
Pa145
Pa147
n 148
150
stone column150
olumn group 154
strongbox156
one column iner159
σ' _v = 100 kPa159
σ' _v = 200 kPa163
166 168

Contents

	4	.5.1	Test JG_v8 (a / d _{sc} = 2 [-])	176
	4	.5.2	Test JG_v10 (a / d _{sc} = 2 [-])	179
	4.6	Comp	parison of the measurements around a single stone column and	
		inside	a stone column group	185
	4.7	Electr	ical impedance measurements	187
	4	.7.1	Measurements around a single stone column	188
		4.7.1.	1 Measurements conducted in specimens consolidated up to σ' _v = 100 kPa (test JG_v5)	189
		4.7.1.	2 Measurements conducted in a specimen consolidated up to σ' _v = 200 kPa (test JG_v5)	191
	4	.7.2	Measurements around a stone column group (test JG_v8)	193
	4.8	Sumr	nary of the conducted modelling under enhanced gravity	
5	С	omple	mentary investigations	197
	5.1	Oedo used	meter tests conducted on samples extracted from the soil model for the centrifuge test JG_v9	197
	5.2	Oedo after o	meter tests conducted on samples extracted from soil models consolidation	203
	5.3	Electr	ical impedance measurement under 1 g	207
	5.4	Micro	scopic investigations	210
	5	.4.1	Description of the Scanning Electron Microscope	210
	5	.4.2	Description of the Environmental Scanning Electron Microscope	212
	5	.4.3	Results obtained	213
	5.5	Mercu	ury Intrusion Porosimetry (MIP)	215
	5	.5.1	General principle	215
	5	.5.2	Sample preparation	216
	5	.5.3	Apparatus used	216
	5	.5.4	Results obtained	217
6	Ν	lumerio	al modelling	219
	6.1	Princi	ples of numerical modelling of ground improvement	219
	6	.1.1	Improvement through compaction (embankment loading with installation of vertical drains)	219
	6	.1.2	Discrete modelling of improvement through material addition with displacement	221
	6.2	Litera stone	ture review of numerical modelling of ground improvement through columns and prefabricated vertical drains	224

	6.2.1		Nu and	merical modelling of ground improvement with stone columns d prefabricated vertical drains	224
	6	.2.2	Ana	alogy to installation of rigid inclusions	234
6.3 Constitutive mode		tituti	ive models	237	
	6	.3.1	Мо	hr-Coulomb model	237
		6.3.1	.1	Description	237
		6.3.1	.2	Limitations of the Mohr-Coulomb model	239
		6.3.1	.3	Input parameters of the Mohr-Coulomb model	239
	6	.3.2	На	rdening Soil Model	239
		6.3.2	.1	Stiffness moduli	240
		6.3.2	.2	Yield surfaces	241
		6.3.2	.3	Shear strain hardening	242
		6.3.2	.4	Volumetric hardening	243
		6.3.2	.5	Limitations of the Hardening Soil Model	244
		6.3.2	.6	Input parameters of the Hardening Soil Model	245
	6.4	Axisy	mm	etric numerical modelling	246
	6	.4.1	Op	tions discarded	246
	6	.4.2	Мо	del	248
	6	.4.3	Re	sults	251
	6.5 3D numerical modelling		266		
	6	.5.1	Мо	del	266
	6	.5.2	Re	sults	269
	6.6	Sumr	mary	<i>i</i> of numerical modelling	276
7	S	Summa	ry		279
	7.1	Gene	eral o	considerations	279
	7.2	Findi	ngs	from centrifuge modelling and complementary investigations	279
	7.3	Nume	erica	al modelling	283
	7.4	Outlo	ok		287
8	A	ppend	lices		289
	8.1	Pore	pres	ssure and load measurements conducted during loading with a	
		mete	ig or r coi	ta single stone column installed in a specimen prepared in an oedo- ntainer (test JG_v1)	290

8.2	Pore pressure and load measurements conducted during loading a single stone column installed in a specimen prepared in an oedometer container (test JG_v5) with a circular footing	292
8.3	Pore pressure and load measurements conducted during loading a single stone column installed in a specimen prepared in a full cylindrical stongbox (test JG_v6) with a circular footing	293
8.4	Values of the J ₄ factor according to Grasshoff (1978)	294
8.5	Comparison of the analytical and measured excess pore water pressure around a single stone column when the maximum load is applied (P = 80 kPa, test JG v1)	294
8.6	Electrical impedance measurements conducted during the test JG v9	295
8.7	Electrical impedance measurements conducted under 1 g	298
8.8	Vertical strain increments computed numerically for test JG_v7	301
8.9	Shear strain increments computed numerically for test JG_v7	303
8.10	Development of plastic points (test JG_v7)	306
8.11	Deformed mesh (test JG_v9)	309
8.12	Total stress distribution computed numerically for test JG_v9	310
8.13	Vertical strain increments computed numerically for test JG_v9	311
8.14	Shear strain increments computed numerically for test JG_v9	314
8.15	Excess pore water pressures computed numerically for test JG_v9	317
8.16	Development of plastic points (test JG_v9)	318
8.17	Total vertical stress distribution as a function of the radial distance at depths of 0 m, 2 m, 4 m and 6 m (test JG_v7)	321
8.18	Total vertical stress distribution as a function of the radial distance at depths of 0 m, 2 m, 4 m and 6 m (test JG_v9)	322
8.19	Comparison of the measured and modelled excess pore water pressures for the test JG_v7	323
8.20	Comparison of the measured and modelled excess pore water pressures for the test JG_v9	324
8.21	Distribution of the total vertical stresses for footing settlements of 100 mm and of 400 mm (test JG_v10)	326
8.22	Total vertical stress distribution below the footing for a settlement of 100 mm (test JG_v10)	329
8.23	Total vertical stress distribution below the footing for a settlement of 400 mm (test JG_v10)	332

8	8.24 Total vertical stress distribution below the footing for a settlement of 850 mm (test JG_v10)	335
8	8.25 Comparison of the measured and modelled excess pore water pressures for the test JG_v10	337
ł	8.26 Development of plastic points (test JG_v10)	338
9	List of subscripts and symbols	343
10	References	353

List of figures

Figure 1.1: Installation effects around a stone column at a model depth of
40 mm @ 50 g (Weber, 2008)2
Figure 2.1: Dry replacement technique: (a) filling the supply hopper, (b) penetration,
(c) compaction by step-wise withdrawal and reinsertion (d) finishing (Keller Grundbau,
2013)
Figure 2.2: Wet top feed technique: (a) penetration, (b) filling, (c) compacting,
(d) finishing (International Construction Equipment Holland, 2013)
Figure 2.3: Ramming installation technique: (a) inserting granular plug,
(b) driving up to the desired depth, (c) filling with granular soil,
(d) compacting and withdrawing casing, (e) finishing (Van Impe et al., 1997b)
Figure 2.4: Interactions at stake under a footing (after Kirsch, 2004)
Figure 2.5: Loading situations of stone columns (Kirsch, 2004)
Figure 2.6: Total vertical stress distribution of a uniform vertical stress σ
(a) plan view showing respective areas of stone columns (A_{sc}) and soft soil (A_s),
(b) cross-section showing stress distribution onto the column (σ_{sc}) and
the host soil (σ_s) (after Aboshi et al., 1991)
Figure 2.7: Measured stress concentration factors at (a) St. Helens and
(b) Canvey Island (Greenwood, 1991)
Figure 2.8: Cross-section of the test site at Humber Bridge (after Greenwood, 1991)16
Figure 2.9: Measured stress concentration factors at Humber Bridge (Greenwood, 1991)16
Figure 2.10: Stress concentration factors in 1 g small-scale model and field tests
(Muir Wood et al., 2000)
Figure 2.11: Failure mechanisms for a single stone column (a) bulging (b) bearing failure
(c) shear failure (d) penetration of short columns (e) shortening of long columns
(f) deflection of slender columns (Muir Wood et al., 2000) based on Waterton &
Foulsham (1984)
Figure 2.12: Failure mechanisms for groups of stone columns (a) bulging failure and
loss of horizontal support (b) shearing failure (c) block failure and column penetration
(Kirsch, 2004)
Figure 2.13: Deformed sand columns at the end of the footing penetration
(Muir Wood et al., 2000)20
Figure 2.14: Zone of influence of a footing on the underlying soil (a) "rigid" cone
beneath footing (b) variation of angle β with area replacement ratio
(Muir Wood et al., 2000)
Figure 2.15: Deformed stone columns at the end of the footing penetration
(McKelvey et al., 2004)
Figure 2.16: Shear failure of a stone column (after Muir Wood et al., 2000)24
Figure 2.17: Truncated conical failure mechanism according to Brauns (1978a)
(a) cross-section, (b) plan view and (c) forces acting on volume A25
Figure 2.18: Stone column group analysis – firm to stiff fine-grained soil
(Barksdale & Bachus, 1983)27

Figure 2.19: Clay and columns represented (a) discretely and (b) as an equivalent plane wall (Springman et al., 2014)
Figure 2.20: Stability considerations on a slip circle passing through soft soil and the
equivalent plane walls (numbers 1 to 11 show the sequence of the slices)
(Springman et al. 2014) 29
Figure 2.21: Various stone column arrangements with the domain of influence of each
column (Balaam & Poulos, 1983)
Figure 2.22: Stress distribution on a rigid footing
Figure 2.22: Stress distribution of a rigid footing.
kinde of mixture (Omine & Ohne 1007)
Kinds of mixture (Omine & Omio, 1997).
(Ore envised, 4070)
(Greenwood, 1970)
Figure 2.25: Values of the ground improvement factor n_0 depending on the area
replacement ratio, for a Poisson's ratio of 1/3 (after Priebe, 1995)
Figure 2.26: Values of an additional component of the area replacement ratio to
account for column compressibility, for a Poisson's ratio of 1/3 (after Priebe, 1995)38
Figure 2.27: Determination of an influence factor y for the calculation of a depth
coefficient f_d for a Poisson's ratio of 1/3 (γ_s : unit weight of the host soil;
d: improvement depth; p: footing load) (after Priebe, 1995)
Figure 2.28: Priebe method best-fit line, with data sorted based on the site soil conditions
(Douglas & Schaefer, 2012)40
Figure 2.29: Static system for the settlement calculation of groups of floating stone
columns, according to Priebe (2003) (Kirsch, 2004)41
Figure 2.30: (a) Rheological modelling of the behaviour of stone columns, (b) Calculation
approach in plane-strain (Van Impe et al., 1997b)42
Figure 2.31: Graphical determination of the settlement reduction factor β
(Van Impe & De Beer, 1983)43
Figure 2.32: Comparison of the ultimate bearing capacities as a function of the angle of
friction calculated using different procedures (after Greenwood & Kirsch, 1983)
Figure 2.33: Comparison of results obtained from empirical models and elastic theories
with field observations (after Greenwood & Kirsch. 1983).
Figure 2.34: Experimental setup for a single stone column loaded vertically through a rigid
footing (Sivakumar et al. 2011) 47
Figure 2.35: Pressure distribution with depth during footing loading of a 60 mm diameter
stone column for different settlements (Sivakumar et al. 2011) 48
Figure 2 36: Representative borehole and selected soil properties from Red River research
site in Winninger, Canada, w: natural water content (borizontal bars display Atterberg
limite): y_{1} : unit weight of saturated soil: σ : stress: σ'_{1} : proceedidation processors: σ'_{1} :
initial vortical effective etraces v_{0} initial vortex pressure (Thissess et al. 2014) (1)
initial vertical effective stress; u ₀ : initial pore water pressure (Thiessen et al., 2011)49
Figure 2.37: Red River test site in winnipeg, Canada: stabilisation of river bank using a
combination of void and rockfill columns (a) cross-section and (b) plan view of the
research site (Thiessen et al., 2011). Elevations and distances in metres

Figure 2.38: Red River test site in Winnipeg, Canada: pore water response to loading	
(Thiessen et al., 2011)	51
Figure 2.39: Red River test site in Winnipeg, Canada: instrumentation layout	
(Thiessen et al., 2011)	51
Figure 2.40: Measured deformations along A axis (in downslope direction) at Red River	
test site in Winnipeg, Canada: (a) SI-1 at crest of slope; (b) SI-4 in between columns	
along upper row; (c) SI-7 in a column in upper row; (d) SI-10 downslope of columns	
(Thiessen et al., 2011)	53
Figure 2.41: Soil arching in stone column-supported embankment (after Deb, 2010)	54
Figure 2.42: Proposed foundation model for soft soil reinforced with stiffer inclusions	
(after Deb, 2010)	55
Figure 2.43: Effect of (a) ultimate bearing capacity of the soft soil and	
(b) the shear modulus of the embankment soil on the arching ratio (Deb, 2010)	56
Figure 2.44: Arching effect in the embankment (Indraratna et al., 2013).	57
Figure 2.45: Consolidation process for (a) a single stone column and	
(b) a group of stone columns (after Black et al., 2007)	58
Figure 2.46: Comparison of the excess pore water pressure dissipation for displacement	
piles and stone columns (McCabe et al., 2009).	59
Figure 2.47: Geometric representation of cylindrical cavity expansion in either two or	
three (spherical) dimensions (Vesic, 1972)	60
Figure 2.48: Deformation paths during penetration of a cone into clay calculated using	
the SPM (Baligh, 1985)	64
Figure 2.49: (a) Radial and (b) vertical deformation profiles after the installation of a	
simple pile obtained with the SSPM analysis (Sagaseta & Whittle, 2001)	65
Figure 2.50: Deformation and density changes during the penetration of a pile in dense	
sand (after Linder, 1977)	67
Figure 2.51: (a) Half-cone inserted in sand (b) test set up (Davidson et al., 1981)	68
Figure 2.52: Displacements (in mm) and volumetric strains (in %) for jacking a half-CPT	
cone into (a) loose sand (relative density = 25 %) (b) dense sand (relative density =	
115 %) (Davidson et al., 1981)	68
Figure 2.53: Evolution of the undrained shear strength ratio (normalised to pre-installation	
values) over time after the installation of stone columns (Aboshi et al., 1979).	69
Figure 2.54: Evolution of the unconfined compressive strength of clay over time	70
(Asaoka et al., 1994).	70
Figure 2.55: Profile of the host soil treated by SCP installation at the Bothkennar test site,	74
Figure 2.56 Lateral stress changes recovered by earth processes calls following refer	/ 1
Figure 2.56: Lateral stress changes measured by earth pressure cells following poker	
eite (Wette et el. 2000)	70
Sile (Walls et al., 2000).	
at the Bothkennar test site (Watts et al. 2000)	70
Figure 2.58: Illustration of the different stress zones around the pior $(r = 1.0 \text{ m})$ in the	
Memohis USA case history (Handy et al. 2002)	73

Figure 2.59: Response of pore pressure transducers installed 2 m, resp. 4 m, below the	
ground surface to column loading at the Raploch test site (Egan et al., 2009)	.74
Figure 2.60: Suggested variation of horizontal permeability with radius according to	
Onoue et al. (1991) (after Saye, 2001)	.75
Figure 2.61: Section of the test setup showing the smear zone	
(after Indraratna & Redana, 1998)	.75
Figure 2.62: Ratio of horizontal to vertical coefficient of permeability against the radial	
distance from the axis of the SCP (denoted as drain) (Indraratna & Redana, 1998)	.76
Figure 2.63: Excess pore water pressures during the insertion of the installation mandrel	
(Sharma & Xiao, 2000)	.77
Figure 2.64: Variation of the horizontal permeability with radial distance to the drain for an	
installation that causes a smear zone (Sharma & Xiao, 2000)	.77
Figure 2.65: Back-calculated sets of coefficients of relative horizontal permeability in the	
undisturbed host soil (k_h) and in the smear zone (k'_h) and horizontal coefficient of	
consolidation c_h values, assuming $d_s = 2 d_m$ (Bergado et al., 1991)	.78
Figure 2.66: Directions of the horizontal penetration tests (Shin et al., 2009)	.80
Figure 2.67: Electrical resistivity and estimated outer boundary of the smear zone	
(Shin et al., 2009)	.81
Figure 2.68: Dimensions of the smear zone derived from the electrical resistance probe.	
All dimensions in millimetres (Shin et al., 2009)	.81
Figure 2.69: Variation of the porosity as a function of the distance from the stone column	
axis (Weber et al., 2010).	.82
Figure 2.70: Variation of the dry bulk density as a function of the distance from the stone	
column axis (Weber et al., 2010)	.83
Figure 2.71: Compression and smear zone around sand compaction piles	
(Juneja et al., 2013)	.84
Figure 2.72: Scanning Electron Microscopy images of kaolin clay specimen adjacent to	
the stone column installed and sheared (CIU) at 50 kPa (a) without smear and	
(b) with smear (Juneja et al., 2013)	.84
Figure 2.73: Radial drainage within a unit cell (after Barron, 1948).	.85
Figure 3.1: Acceleration acting on a body rotating with angular velocity ω	
(Springman, 2004)	.92
Figure 3.2: Principle of centrifuge modelling (after Schofield, 1980)	.93
Figure 3.3: Comparison of the stress profiles (a) in a prototype,	
(b) in a small-scale model and (c) in a centrifuge model (after Laue, 1996).	.93
Figure 3.4: Distribution of the vertical stress with depth in a prototype situation and in the	
centrifuge (z_s denotes the depth of the sample) (after Taylor, 1995).	.95
Figure 3.5: (a) Cross-section of the centrifuge model of a clay sample reinforced by wick	
drains and basal reinforcement loaded by an embankment and	
(b) influence of the drains on the dissipation of excess pore water pressures during	
and after embankment construction (Sharma & Bolton, 2001).	.96
Figure 3.6: Comparison between settlement improvement ratios obtained with the	
solution of Priebe (1995) solution and from centrifuge tests (Al-Khafaji & Craig, 2000).	97

Figure 3.7: Pile lateral pressure as a function of the lateral displacement y normalised by
the pile radius d (Dyson & Randolph, 1998)98
Figure 3.8: Sand compaction pile installation tool used at the National University of
Singapore. All dimensions are in mm (Ng et al., 1998)
Figure 3.9: Embankment constructed on soft clay (U2) and when improved by SCPs
installed at 1g (R1_20) or at 50 g (D50_20) (a) deformation grid lines in clay improved
with SCPs built in-flight (b) maximum lateral displacement (in mm) of the grid line L2
with g-level (Lee et al., 2001)100
Figure 3.10: Layout of SCPs and transducers for the installation of SCPs in test T7,
D 20 mm (D: SCP diameter) (Lee et al., 2004)100
Figure 3.11: Layout of SCPs and transducers for tests: (a) T1, D 18 mm;
(b) T2, D 20 mm; (c) T3, D 16 mm; (d) T4, D 17 mm; (e) T5, D 20 mm;
(f) T6, D 20 mm (D SCP diameter) (Lee et al., 2004)101
Figure 3.12: (a) Total horizontal stress at 60 mm depth and (b) pore pressures at 80 mm
depth during SCP installation in clay. Line 1: time at which the casing tip reaches the
depth of the transducers. Line 2: time at which the casing tip reaches the full
penetration and withdrawal starts. Line 3: time at which the casing tip reaches the
depth of the transducers during withdrawal. Line 4: end of the SCP installation
(Lee et al., 2004)
Figure 3.13: Ratios of measured to calculated horizontal stresses and pore pressures
plotted against (a) dt / D and (b) rt / D (Lee et al., 2004)
Figure 3.14: Ratios of measured to calculated horizontal stresses and pore pressures
plotted against the ratio of the depth of the transducers d_t to the radial distance of
the transducers r _t (Lee et al., 2004)103
Figure 3.15: Layout of sand compaction piles (P1 to P4) and location of the T-Bar test
(denoted as s) for pile group tests featuring either a) 2 piles or b) 4 piles
(all dimensions in mm) (Yi et al., 2013)104
Figure 3.16: Undrained shear strengths measured in the centrifuge for different tests
(Yi et al., 2013)105
Figure 3.17: Experimental setup for the in-flight installation of stone columns
(Weber et al., 2005)106
Figure 3.18: Detailed view of the stone column installation tool developed by
Weber (2004)
Figure 3.19: Settlements measured with and without stone columns at the toe of the
embankment (1), and on top of the embankment (2) (after Weber 2008)107
Figure 3.20: Evolution of the pore water pressure after embankment construction in the
improved ground within the sand pile grid () in comparison with unimproved ground
(—) at three depths in the model with a groundwater table located at the surface of
the model in the middle of the container: $P_1 = 120$ mm, $P_2 = 70$ mm, $P_3 = 25$ mm
equivalent to prototype depths of 6 m, 3.5 m and 1.25 m respectively (after Weber,
2008)
Figure 3.21: Installation effects around a stone column at a model depth of
40 mm @ 50 g (Weber, 2008)108

Figure 3.22: Cross-section of the ETH Zürich geotechnical drum centrifuge	
(Springman et al., 2001)	.109
Figure 3.23: Cross-section of the transducer DRUCK PDCR 81 (König et al., 1994)	.110
Figure 3.24: Load cell produced by Hottinger Baldwin Messtechnik GmbH	
(Arnold, 2011)	.111
Figure 3.25: T-Bar penetrometer (a) front view and (b) side view	.112
Figure 3.26: T-Bar penetrometer (after Weber, 2008)	.112
Figure 3.27: T-Bar penetrometer mounted on the working arm of the tool platform in the	
centrifuge (after Weber, 2008).	.112
Figure 3.28: T-Bar calibration setup (after Weber, 2008)	.113
Figure 3.29: Electrical impedance needle (a) side view and (b) tilted view of the tip	
(outer diameter 1 mm)	.114
Figure 3.30: Schematic views of the electrical impedance needle (a) covered, (b) with	
the cover retracted and (c) cross-section A-A (Gautray et al., 2014)	.115
Figure 3.31: Ultrasonic bath Emmi 4, produced by EMAG AG (Gautray et al., 2014)	.115
Figure 3.32: Vacuum mixer	.119
Figure 3.33: General view (a) cylindrical strongbox used for the consolidation of	
Birmensdorf clay under the hydraulic press, (b) view of the channels filled with	
Perth sand and (c) filling with clay suspension	.120
Figure 3.34: Hydraulic press used for the consolidation of clay	.121
Figure 3.35: Preparation of the clay model (a) slurry inside the oedometer container	
(b) under consolidation in the oedometer container.	.122
Figure 3.36: Schematic representation (a) of the possible cylindrical rupture zones	
when extracting the clay sample from the container and (b) of the use of the plastic	
sheet in order to prevent the adhesion between clay and oedometer container	.122
Figure 3.37: (a) Removal of the oedometer container from the sample	
(b) view of the model with clay sample surrounded by Perth sand	.123
Figure 3.38: Ports for the installation of PPTs into the soil model prepared in 250 mm	
diameter containers	.124
Figure 3.39: PPT installation tool.	.125
Figure 3.40: Installation of the PPTs in the cylindrical strongbox (a) introduction of the	
PPTs through the dedicated ports into the pre-drilled hole (b) filling of the pre-drilled	
hole with slurry (Weber, 2008).	.125
Figure 3.41: PPT installation setup for a specimen consolidated in an oedometer	
container	.126
Figure 3.42: Insertion of the PPT installation tool into the clay specimen using the	
installation device	.127
Figure 3.43: Pin used to mark the positions of the stone columns to be installed	
(a) plan view and (b) side view	.128
Figure 3.44: Tilted view of the pin used to mark the positions of the stone columns to be	
constructed with the stone column installation tool.	.128
Figure 3.45: Vertical cross-section of the experimental setup in the centrifuge for the	
specimens prepared in a cylindrical strongbox (Section 3.6.2), in an oedometer	

container and in an adapted oedometer container (Section 3.6.4)	129
Figure 3.46: Position of the water level in the soil and in the standhine for specimens	.120
prepared in a cylindrical strongbox (tests IG v2 IG v3 IG v6 IG v8 and	
	130
Figure 3.47: Position of the water level in the soil and in the standhing for specimens	. 100
propared in an opdometer container (tests IC v1 and IC v5)	121
Figure 2.49: Desition of the water level in the seil and in the standning for encommons	. 131
Figure 3.48: Position of the water level in the soil and in the standpipe for specimens	404
prepared in an adapted oedometer container (tests JG_V7 and JG_V9).	.131
Figure 3.49: Specimens prepared in a cylindrical strongbox: (a) plan view and	
(b) cross-section of the soil model with positions of the PPTs and of the	
stone columns	.133
Figure 3.50: Specimens prepared in a cylindrical strongbox: cross-section of the	
soil model, with positions of the PPTs and of the stone columns (a / d_{sc} = 2 [-])	.134
Figure 3.51: Specimens prepared in a cylindrical strongbox: plan view of the soil model	
with positions of the PPTs and of the stone columns (a / d_{sc} = 2 [-])	.135
Figure 3.52: Specimens prepared in a cylindrical strongbox: insertion points of the	
electrical impedance needle: positions of the reference points RP1 and RP2 and the	
points A2 to J2 (a / d _{sc} = 2 [-])	.136
Figure 3.53: Specimens prepared in an oedometer container and surrounded by Perth	
sand: (a) plan view and (b) cross-section of the soil model with positions of the	
PPTs and of the stone column.	.138
Figure 3.54: Comparison of the lateral stresses acting on the clay sample for specimens	
prepared in an oedometer container and surrounded by Perth sand	
$(\sigma'_{\rm h, Perth, sand}, calculated based on the silo theory) and for specimens prepared in a$	
rigid container (cylindrical strongbox or adapted oedometer) with a pre-consolidation	
of $\sigma'_{\rm v} = 100$ kPa ($\sigma'_{\rm b alow} 100$ kPa) or of $\sigma'_{\rm v} = 200$ kPa ($\sigma'_{\rm b alow} 200$ kPa)	140
Figure 3.55: Specimens prepared in an oedometer container and surrounded by Perth	
sand: insertion points of the electrical impedance needle and positions of the	
reference points RP1 and RP2 and the points A to F	1/1
Figure 3.56: Specimens propared in an adapted opdometer: (a) plan view and	. 14 1
(b) cross section of the soil model with positions of the DDTs and of the stone	
	140
Column.	. 142
Figure 4.1: Profile of the vertical effective stress in the centrifuge ($\sigma_{v,centrifuge}$) and	
under the press ($\sigma_{v,press}$) for a pre-consolidation of 100 kPa	.144
Figure 4.2: Profile of the vertical effective stress in the centrifuge ($\sigma_{v,centrifuge}$) and	
under the press ($\sigma'_{v,press}$) for a pre-consolidation of 200 kPa	.144
Figure 4.3: Profiles of the over-consolidation ratio for pre-consolidation stresses of	
100 kPa and 200 kPa	.145
Figure 4.4: Profiles of the undrained shear strength obtained with the T-Bar during tests	
JG_v2 (s _{u,JG_v2}), JG_v8 (s _{u,JG,v8}) and JG_v10 (s _{u,JGv10,A} and s _{u,JG,v10,B}) compared with	
theoretical predications based on Trausch-Giudici (2003, $s_{u,TG}$) and Küng (2003, $s_{u,K}$)
and with the back-calculated values of the parameters a and b $(s_{u,JG})$.146

Figure 4.5: Profiles of the undrained shear strength obtained with the T-Bar during test	
JG_V9 (s _{u,JG_V9,A} and s _{u,JG_V9,B}) compared with theoretical predictions based on	
I rausch-Gludici (2003, $s_{u,TG}$) and on Kung (2003, $s_{u,K}$), and with the back-calculated	
values of the parameters a and b $(s_{u,JG})$.	146
Figure 4.6: Profiles of the undrained shear strength obtained with the 1-Bar during tests	
JG_v1 (s _{u,JG_v1}) and JG_v5 in the specimen consolidated up to 200 kPa	
$(s_{u,JG_{v5}})$ compared with the profile obtained with back-calculated values of the	
parameters of a and b (s _{u,JG})	147
Figure 4.7: Profiles of the undrained shear strength obtained with the T-Bar during test	
JG_v7 (s _{u, JG_v7,A} and s _{u, JG_v7_B}) compared with theoretical predictions based on	
Trausch-Giudici (2003, $s_{u,TG}$) and on Küng (2003, $s_{u,K}$) and with the back-calculated	
values of the parameters a and b (s _{u,JG})	148
Figure 4.8: Profiles of the back-calculated undrained shear strength for a specimen	
prepared in a full cylindrical strongbox $(s_{u,JG,1})$ and in adapted oedometers	
$(s_{u,JG,2} \text{ and } s_{u,JG,3})$.	149
Figure 4.9: Installation of a compacted column in a specimen pre-consolidated up to	
200 kPa (test JG_v7) (a) pore water pressures (b) depth of the tip of the installation	
tool with time	151
Figure 4.10: Insertion of the stone column installation tool in a specimen	
pre-consolidated up to 200 kPa (tests JG_v7) (a) excess pore water pressures	
(b) depth of the tip of the installation tool with time.	152
Figure 4.11: Insertion of the stone column installation tool in a specimen	
pre-consolidated up to 200 kPa (test JG_v7): excess pore water pressures	153
Figure 4.12: Insertion of the stone column installation tool in a specimen	
pre-consolidated up to 100 kPa (test JG_v9) (a) excess pore water pressures	
(b) depth of the tip of the installation tool with time.	154
Figure 4.13: Insertion of the stone column installation tool in a specimen consolidated	
up to 100 kPa (test JG_v10) (a) excess pore water pressures (b) location of the	
stone columns installed	155
Figure 4.14: Insertion of the stone column installation tool in a specimen consolidated	
up to 100 kPa (test JG_v10): excess pore water pressures	156
Figure 4.15: Loading of a single stone column in a specimen pre-consolidated up to	
100 kPa (test JG_v2) (a) excess pore water pressures (b) evolution of the	
footing load (c) deformation controlled footing settlement	158
Figure 4.16: Loading of a single stone column in a specimen pre-consolidated up to	
100 kPa (test JG_v9) (a) excess pore water pressures (b) evolution of the	
footing load (c) deformation controlled footing settlement	160
Figure 4.17: Loading of a single stone column in a specimen pre-consolidated up to	
100 kPa (test JG v9), dissipation with time of the excess pore water pressures at a	
depth of 48 mm around the stone column (a) from 0 s to 2000 s and (b) from 3000 s	
to 9000 s after reaching the peak footing load (which corresponds to t = 0 s)	161
Figure 4.18: Loading of a single stone column in a specimen pre-consolidated up to	
100 kPa (test JG_v9): dissipation of the excess pore water pressures at a depth of	

96 mm with time around the stone column (a) from 0 s to 2000 s and (b) from	
3000 s to 9000 s after reaching the peak footing load (which corresponds to t = 0 s). 162
Figure 4.19: Loading of a single stone column in a specimen pre-consolidated up to	
100 kPa (test JG_v9): rate of dissipation of excess pore water pressures with time	400
after reaching the peak footing load (which corresponds to $t = 0$ s).	163
Figure 4.20: Loading of a single stone column in a specimen pre-consolidated up to	
$200 \text{ kPa} (JG_v/) (a)$ excess pore water pressures (b) evolution of the footing load	
(c) deformation controlled footing settlement.	165
Figure 4.21: Distribution of the excess pore water pressure with increasing radial	
distance to the axis of the stone column at a depth of 48 mm as a percentage of	
the applied footing load P	167
Figure 4.22: Distribution of the excess pore water pressure with increasing radial	
distance to the axis of the stone column at a depth of 96 mm as a percentage of	
the applied footing load P	168
Figure 4.23: Isobars of vertical stress increments under a vertically loaded quadratic	
plate (Lang et al., 2007)	169
Figure 4.24: Isobars of peak values of excess pore pressures measured in the centrifug	е
under a vertically loaded circular footing resting on top of a stone column	174
Figure 4.25: Isobars of vertical stress increments under a vertically loaded circular	
footing (after Grasshoff, 1978).	174
Figure 4.26: Distribution of the total vertical stress increase as a function of the radial	
distance from the stone column at 96 mm depth as a percentage of the applied	
footing load P, and in comparison with the depth factor J_4 according to Grasshoff	
(1978)	175
Figure 4.27: Excess sand shown on top of columns B, D and E within the footprint of the	÷
footing on the surface of the clay model after test JG_v8	177
Figure 4.28: Loading of a stone column group in a specimen pre-consolidated up to	
100 kPa (JG_v8) (a) excess pore water pressures (b) evolution of the footing load	
(c) deformation controlled footing settlement.	178
Figure 4.29: Position of the footing used for the loading phase during test JG_v10	
(a = 24 mm)	180
Figure 4.30: Test JG_v10: (a) excess pore water pressures (b) evolution of the footing	
load (c) footing settlement during the loading phase of a stone column group	181
Figure 4.31: Distribution of the excess pore water pressure with increasing radial	
distance to the axis of the centre stone column at depths of 30 mm and of 80 mm	
as a percentage of the applied footing load P (test JG_v10)	182
Figure 4.32: Loading of a stone column group in a specimen pre-consolidated up to	
100 kPa (test JG_v10), dissipation with time of the excess pore water pressures at	а
depth of 30 mm around the stone column (a) from 0 s to 2000 s and (b) from 3000	S
to 7000 s after reaching the peak footing load (which corresponds to $t = 0$ s)	183
Figure 4.33: Loading of a stone column group in a specimen pre-consolidated up to	
100 kPa (test JG_v10), dissipation with time of the excess pore water pressures at	а

depth of 80 mm around the stone column (a) from 0 s to 2000 s and (b) from 3000 s
to 7000 s after reaching the peak footing load (which corresponds to $t = 0$ s)
Figure 4.34: Loading of a stone column group in a specimen pre-consolidated up to
100 kPa (test JG_v10): rate of dissipation of excess pore water pressures with
time after reaching the peak footing load (which corresponds to t = 0 s)
Figure 4.35: Excess pore water pressures during the footing load test on a single stone
column (test JG_v9)
Figure 4.36: Excess pore water pressures during the footing load test on a stone column
group (test JG_v10). The maximum load was reached at 1000 s
Figure 4.37: Loading of a single stone column in a specimen pre-consolidated up to
100 kPa (test JG_v9): rate of dissipation of excess pore water pressures with time
after reaching the peak footing load (which corresponds to t = 0 s)
Figure 4.38: Loading of a stone column group in a specimen pre-consolidated up to
100 kPa (test JG_v10): rate of dissipation of excess pore water pressures with time
after reaching the peak footing load (which corresponds to t = 0 s)
Figure 4.39: Installation effects around a stone column at a model depth of 40 mm
@ 50 g (Weber, 2008)
Figure 4.40: Positions of the needle insertion points around a single stone column,
and extent of the zones 2 and 3 according to Weber (2008)
Figure 4.41: Impedance recorded at reference points RP1 and RP2 during test JG_v5 189
Figure 4.42: Impedance recorded at the points A, B and C during test JG_v5190
Figure 4.43: Impedance recorded at the points D, E and F during the test JG_v5190
Figure 4.44: Impedance recorded at the reference points RP1 and RP2 during test
JG_v5191
Figure 4.45: Impedance recorded at the points A, B and C during test JG_v5192
Figure 4.46: Impedance recorded at the points D, E and F during test JG_v5193
Figure 4.47: Positions of the needle insertion points around a stone column group
(test JG_v8, a / d _{sc} = 2 [-]194
Figure 4.48: Impedance recorded at the reference points RP1 and RP2 during
test JG_v8194
Figure 4.49: Impedance recorded at the points A2, B2 and C2 during test JG_v8195
Figure 4.50: Impedance recorded at the points D2, E2 and F2 during test JG_v8195
Figure 4.51: Impedance recorded at the points G2, H2, I2 and J2 during test JG_v8196
Figure 5.1: Plan view of the extraction positions of the specimens for oedometer tests
(test JG_v9)197
Figure 5.2: Cross-section of the extraction positions of the specimens for oedometer
tests (test JG_v9)198
Figure 5.3: Distribution of the over-consolidation ratio of the specimens used for the
oedometer tests during the centrifuge test
Figure 5.4: Evolution of the void ratio with one dimensional loading in an oedometer199
Figure 5.5: Distribution of the confined stiffness moduli as a function of the vertical
effective stress

Figure 5.6: Distribution of the mean vertical (M _{E, v, average}) and horizontal (M _{E, h, average})	
confined stiffness moduli as a function of the vertical effective stress.	.202
Figure 5.7: Distribution of the mean settlements for the samples extracted in the vertical	
and horizontal directions with one-dimensional loading in an oedometer.	.202
Figure 5.8: Definition of E _{oed} ^{ref} from oedometer test results	
(after Brinkgreve & Broere, 2008).	.203
Figure 5.9: Evolution of the permeability with one dimensional loading in an oedometer	.203
Figure 5.10: Extraction positions of the samples for oedometer tests (test JG v10)	.204
Figure 5.11: Distribution of the over-consolidation ratio in the horizontal direction of the	
specimens used for the oedometer tests.	.204
Figure 5.12: Evolution of the void ratio with one dimensional loading in an oedometer	.205
Figure 5.13: Distribution of the horizontal confined stiffness moduli as a function of the	
vertical stress.	.206
Figure 5.14: Evolution of the coefficient of permeability with one dimensional loading in	
an oedometer	207
Figure 5.15: Setup for the insertion of the electrical impedance needle under 1 g in the	
laboratory (a) schematic view (b) picture.	208
Figure 5 16: Positions of the insertion points of the electrical impedance needle	200
under 1 g All dimensions in mm	209
Figure 5.17: Impedance recorded under 1 g after completion of the first consolidation	.200
stare	209
Figure 5.18: Impedance recorded under 1 g after completion of the fifth consolidation	.200
stare	210
Figure 5.19: Illustration of the contact between the electron beam and the surface of the	.210
sample (Peschke 2013)	211
Figure 5 20: Electron interaction volume within a sample (after Science Education	
Resource Center 2013)	211
Figure 5.21: Types of interaction between electrons and a sample. (Science Education	
Resource Center 2013)	212
Figure 5.22: Schematic of an ESEM illustrating the different pressures zones	
(Donald 2003)	213
Figure 5 23: ESEM picture of zone 2 located a radial distance of 1 mm from the edge of	.210
the column and at a depth of 40 mm below the surface, with the radial axis horizonta	I
(Weber 2008)	214
Figure 5 24: ESEM picture of the zone 3 located at a radial distance of 5 mm from the	
edge of the column and at a depth of 20 mm below the surface, with the radial axis	
horizontal	214
Figure 5.25: ESEM pictures of the zone 3 at a radial distance of 5 mm from the edge of	
the column and at (a) 60 mm depth and (b) 100 mm depth, with the radial axis	
horizontal	215
Figure 5 26: Vacuum pump	216
Figure 5.27: Dilatometer (a) containing the soil specimen before and (b) containing	0
mercury after the investigation using the macro pore unit Pascal 140	217

Figure 5.28: Porosity as a function of the radial distance from the axis of the stone	
column at a depth of (a) 20 mm (b) 60 mm (c) 100 mm	218
Figure 6.1: Conversion of axisymmetric unit cell into plane-strain for drains	
(a) axisymmetric radial flow (b) plane-strain (Indraratna & Redana, 1997)	220
Figure 6.2: Cross-sections of the stone column (a) unit-cell; and plane-strain conversions	
according to (b) method 1 and (c) method 2 (Tan et al., 2008)	222
Figure 6.3: Plan view of 2D stone columns strips (a) width of an equivalent strip	
(b) strip spacing (Chan & Poon, 2012).	224
Figure 6.4: Soil profile and properties at Tianjin Port in Beijing, China	
(Rujikiatkamjorn et al., 2007)	225
Figure 6.5: Case study at Tianjin Port in Beijing, China: embankment and vacuum	
loading on soft soil stabilised by drains (a) loading history and (b) comparison of the	
predicted (FEM) and measured (Field) consolidation settlements (Rujikiatkamjorn	
et al., 2007).	226
Figure 6.6: Embankment pre-loading at Tianjin Port in Beijing, China (a) loading history	
(b) comparison of the results obtained via 2D and 3D modelling with field	
observations (Indraratna et al., 2009).	227
Figure 6.7: Development of settlement at the crest of an embankment constructed	
in-flight on remoulded Birmensdorf clay reinforced with stone columns – comparison	
between numerical model and centrifuge results (Weber et al., 2009).	228
Figure 6.8: Numerical and experimental study of PVDs installed in clay (a) plan view	
with dimensions of the smear and transition zones in terms of mandrel size	
(b) comparison of settlement obtained with results by Indraratna & Redana (1998)	
(Basu et al., 2010)	229
Figure 6.9: Model geometry and axisymmetric finite element mesh with applied radial	
deformation of the stone column wall (Castro & Karstunen, 2010).	230
Figure 6.10: Normalised excess pore pressures generated by the stone column	
installation (Castro & Karstunen, 2010)	230
Figure 6.11: Decrease of the undrained shear strength after column or pile installation	
(Castro & Karstunen, 2010)	231
Figure 6.12: Unit cell (a) typical stone column-reinforced soft clay deposit supporting an	
embankment; (b) unit cell idealisation; (c) cross-section (Indraratna et al., 2013)	233
Figure 6.13: Influence of clogging on the normalised average excess pore water	
pressure and on the normalised average ground settlement (Indraratna et al., 2013).	234
Figure 6.14: Boundary conditions for (a) the fixed pile approach (b) the moving pile	
approach (Dijkstra et al., 2011).	235
Figure 6.15: Comparison of calculated and measured stress response at the tip of the	
pile during installation for the fixed pile approach (after Dijkstra et al., 2011)	236
Figure 6.16: Comparison of calculated and measured stress response at the tip of the	
pile during installation for the moving pile approach (after Dijkstra et al., 2011).	236
Figure 6.17: Modelling technique for the simulation of the pile insertion	
(after Grabe & Pucker, 2012)	237
Figure 6.18: Elastic perfectly plastic model	238