Selbstbauprojekte mit Leuchtdioden

In diesem Buch erhalten Sie viele Ideen für Anwendungen mit verschiedenen Typen von Leuchtdioden. Neben den Grundlagen zur Handhabung von LEDs werden in 50 Selbstbauprojekten diverse originelle und kreative Anwendungsmöglichkeiten für Haus, Garten und Hobby vorgestellt.

Aus dem Inhalt:
- Allgemeines über LEDs
- Nützliches für den Hausgebrauch
- Spielzeuge mit LEDs selbst gebaut
- Gartenprojekte mit LEDs selber bauen
- Partylaune mit LEDs
- Sicherheit mit LEDs
- Futuristische Wand- und Deckengestaltung selbst gemacht

ISBN 978-3-7723-4379-7
EUR 19,95
Vorwort

Ziel des Buches ist es, Anregungen für die Anwendung von Leuchtdioden zu geben. Deshalb werden hier Ideen vorgestellt, die praxisorientiert sind und Sie motivieren, selbst aktiv zu werden.

Ich danke an dieser Stelle allen, die mir freundlicherweise Informationen, Daten und Bildmaterial für dieses Buch zur Verfügung gestellt haben: der Berufsgenossenschaft Elektro Textil Feinmechanik in 50968 Köln, dem VDE Verlag GmbH in 10625 Berlin, Conrad Electronic SE, Pusch GmbH & Co. KG, Pollin Electronic GmbH und allen anderen, die im Quellenverzeichnis erwähnt sind.

Für Anregungen und Verbesserungsvorschläge bin ich jederzeit dankbar.

Peter Lay, März 2009
Inhalt

1 Eine kurze Geschichte der LEDs ... 8

2 Allgemeines über LEDs .. 10

3 Nützliches für den Hausgebrauch .. 21
 3.1 Tassenuntersetzer mit LED .. 21
 3.2 LED-Tassenuntersetzer mit Temperaturdetektor 23
 3.3 LED-Lichtorgel für die Hi-Fi-Anlage 26
 3.4 LED-Elektronik in der Flasche ... 29
 3.5 Vitrine mit LED-Elektronik .. 33
 3.6 Hinweistafeln fürs Haus ... 36
 3.7 Kerzenlicht und LED .. 39
 3.8 Licht aus der Sektflasche ... 43
 3.9 Dekorative Blumenleuchte .. 46

4 X-Block®-Technologie ... 49
 4.1 Treppenaufgang ... 51
 4.2 Wohnzimmer ... 53
 4.3 Schlafzimmer ... 54
 4.4 Kinderzimmer ... 56
 4.5 Badezimmer .. 57

5 LED-Projekte für die Gesundheit .. 59
 5.1 Bild mit Spiralstruktur .. 59
 5.2 Bild mit Dreieckstruktur .. 61
 5.3 3-D-Objekt ... 65

6 Spielzeuge .. 68
 6.1 Dreirad und Co... 68
 6.2 Modellbau .. 75
 6.3 Chinesisches Schattentheater .. 77
 6.4 Experimentierkasten mit LEDs .. 81
 6.5 Puppenhaus ... 84
 6.6 Modelleisenbahn .. 84

7 Gartenprojekte .. 86
 7.1 Beleuchtung für Gartenzwerge ... 86
7.2 Solaraggregat für den Garten .. 88
7.3 Marderschreck ... 89
7.4 Lichtschlauch für den Garten .. 91

8 Partylaune mit LEDs ... 96
 8.1 LED-Herz ... 96
 8.2 Selbstleuchtende Luftballons 97

9 Strom sparen mit LEDs .. 100

10 Interessantes mit LEDs .. 103
 10.1 Sicherheit mit LEDs .. 103
 10.2 Extravagante Designs mit LEDs 104
 10.3 Wandschmuck .. 105
 10.4 Elektronische Spielereien .. 105

11 Weitere Projekte mit LEDs ... 107

12 Nützliche LED-Schaltungen ... 108

13 Glossar .. 111

14 Schlusswort .. 112

15 Anhänge .. 113

16 Quellennachweis ... 152

17 Stichwortverzeichnis ... 153
6 Spielzeuge

Kinder können Gefahrensituationen noch nicht richtig einschätzen. Deshalb ist es bei den folgenden Projekten wichtig, dass für Kinder keine Verletzungsgefahr besteht und dass sie die Bauteile auch nicht verschlucken können.

6.1 Dreirad und Co.

Abb. 80: Eine kleine Auswahl von (a) Dreirädern und (b) sonstigen Spielfahrzeugen

6.1 Dreirad und Co.

Abb. 81: Vorschläge für Stellen, an denen man Baugruppen anbringen kann: (A) und (B) Schalter für die gesamte Elektrik, (C) elektronisches Display, (D) Vorderscheinwerfer, Blinker und Nummernschild, (E) Rücklichter, Blinker und Nummernschild, (F) Schalter für Bremslicht.

Schaltungstechnisch am einfachsten ist das Bremslicht (siehe Abb. 82). Es besteht im Wesentlichen aus der Stromversorgung, einem Schalter und ein paar LEDs samt Vorwiderständen. Der Schalter muss am Bremshebel angebracht werden, was mechanisch am aufwendigsten sein dürfte und von der jeweiligen Fahrzeugkonstruktion abhängt.

Abb. 82: Schaltung für ein Bremslicht

Abb. 83: Schaltung für den Blinker und die Warnblinkeinlage

Abb. 84: Schaltung für die Scheinwerfer

Die zweite Variante hingegen zeigt zumindest einen Trend der Geschwindigkeit an (siehe Abb. 85b). Das IC D630P ist ein analoger Spannungsindikator mit Balkenanzeige. Im Spannungsindikator ist, neben 10 LEDs, noch die Auswerte-Elektronik integriert. Sie wird direkt mit einer Spannung von 12 V versorgt; der Eingang verträgt eine Spannung
von bis zu maximal +5 V. Wenn die Eingangsspannung 0 V beträgt, leuchtet keine LED. In Schritten von jeweils +100 mV leuchtet jeweils eine weitere LED zusätzlich auf. Bei einer Eingangsspannung von +1.000 mV leuchten somit alle 10 LEDs. Um festzustellen, wie schnell das Fahrzeug fährt, wird ein kleiner Dynamo verwendet. Den Dynamo kann man mit einem kleinen Solarmotor oder einem anderen kleinen Motor und aufgesetztem Gummirädchen selbst zusammenbasteln. Sobald sich das Fahrzeug bewegt, liefert der Dynamo eine Spannung, die anschließend das IC direkt ansteuert. Wenn der Dynamo eine zu große Spannung liefert, muss man noch einen Spannungsteiler (am besten mit Trimmpoti) installieren. Der Kondensator C1 dient nur zur Glättung der Spannung. Die Diode D1 ist lediglich als Verpolschutz gedacht, falls der Dynamo eine Gleichspannung liefert, bzw. als Gleichrichter, falls der Dynamo eine Wechselspannung liefert. Das hängt allein davon ab, was für einen Motor man als Dynamo verwendet. D2 dient als einfacher Überspannungsschutz. Wenn man weiß, dass der Dynamo niemals eine größere Spannung als 5 V liefert, kann man auf D2 auch verzichten.

Abb. 85 (a): Einfache Schaltung für einen „Pseudo“-Tachometer

Abb. 86: Schaltung für ein einfaches Nummernschild mit LEDs; die Anzahl der LED-Pfade hängt vom Umfang der Darstellung ab.

Abb. 87: Montage der Bauteile für das Nummernschild.

Abb. 88: Schaltung für die Energieversorgungseinheit

Beachten Sie: Bei Kindern muss man erhöhte Sicherheitsmaßnahmen ergreifen! Dies gilt sowohl im Hinblick auf die Verletzungsgefahr bei der verwendeten Technik als auch auf das Verhalten der Kinder mit dem Fahrzeug.

6.2 Modellbau

Auch im Modellbau lassen sich LEDs vorzüglich einsetzen. Man muss allerdings vorsichtig sein und zwei Personengruppen unterscheiden:

1. Anhänger des reinen Modellbaus, die nur reale große Objekte (Gebäude, Fahrzeuge, Flugzeuge …) im kleinen Maßstab nachbauen und dabei großen Wert auf Detailtreue legen.
2. Liebhaber von Modellen, die weniger Wert darauf legen, ob die Modelle exakt maßstabs- und detailgetreu mit den Originalen übereinstimmen.

Während die erste Gruppe keine Toleranz gegenüber Abweichungen zwischen dem Modell und dem Original zulässt, denkt die zweite Gruppe auch mal darüber nach, ob ein Modell mehr oder weniger variiert werden kann. Der letzten Gruppe kommt es gelegen, in ihre Modelle die eine oder andere LED einzubauen. Welche Möglichkeiten es dafür gibt, wird im Folgenden anhand von ein paar Ideen kurz vorgestellt.

Abb. 89 zeigt stellvertretend eine kleine Auswahl von möglichen Modellen.

Abb. 89: Ausgewählte Exemplare aus dem Reich des Modellbaus

Eine naheliegende Idee ist es, ins Cockpit eines Flugzeugs eine kleine LED (SMD-Bauform) zu integrieren – am besten so, dass man die Elektrik nicht sieht und der Modellcharakter weitestgehend erhalten bleibt. Da man in den Modellen meist nur sehr wenig Platz hat, wird man zur Stromversorgung entweder nur eine Knopfzelle installieren oder dünnen Schaltdraht durch die Basisplatte in der Vitrine einführen und ein Netzgerät verwenden. Den Vorwiderstand muss man ebenfalls noch unterbringen – entweder im Flugzeugrumpf oder im Sockel der Vitrine.

Wer es gerne ausgefallener haben möchte, kann mit LEDs auch eine extravagante Rumpfbeleuchtung erzeugen. Früher waren die Flugzeugteile des Rumpfs genietet. Man stelle sich vor, wie ein Modell aussehen würde, wäre es da, wo Nieten vorhanden sind, mit Miniatur-LEDs versehen ...

Wer hat nicht schon Papierflieger zusammengefaltet? Manche haben gute und andere eher schlechte Flugeigenschaften. Wer Papierflieger in einer Vitrine aufstellt und sie anleuchtet, wird erkennen, dass man selbst mit ihnen oder anderen Papiermodellen faszinierende Effekte erzielen kann. Durch geschicktes Falten kann man kleine Hohlräume im Flieger schaffen, in die LEDs samt Vorwiderständen und Knopfzellen inte-
griert werden können. Selbst wenn die LEDs von außen nicht sichtbar sind, durchleuchten sie das Papier (siehe Abb. 90). Je nachdem, wie viele Papierschichten das Licht durchdringen muss, kommen dadurch Lasierungseffekte zur Geltung, die unterschiedliche Helligkeitsgrade erzeugen.

![Abb. 90: Papierflieger mit LED-Beleuchtung, (a) bei Tageslicht und (b) bei Dämmerung.](image)

Was bisher für Flugzeugmodelle vorgestellt wurde, gilt natürlich auch für alle anderen Arten von Modellen.

6.3 Chinesisches Schattentheater

Mit moderner LED-Technologie kann man viele interessante Licht- und Schatteneffekte erzielen. Nicht nur für den Kindergeburtstag, sondern auch für so manche Erwachsenenveranstaltung kann Schattentheater ein gelungener Programmpunkt sein.

Das chinesische Schattentheater ist eine Sonderform des Puppentheaters und von großer Bedeutung für die chinesische Kultur. In China ist das Schattenspiel eine wichtige Kunstform, bei der zweidimensionale Figuren, die meist transparent sind, vor einer Lichtquelle bewegt werden. Dicht vor den Figuren (aus Sicht des Publikums) befindet sich ein Schirm, auf den die Umrisse der Figuren projiziert werden. Die Figuren und die Kulissen des originalen chinesischen Schattentheaters sind sehr filigran aufgebaut,
wobei die Figuren meist aus mehreren Teilen zusammengesetzt sind, die von den Spielern über dünne Stäbe bewegt werden können.

![Diagramm](image)

Abb. 91: Skizze einer Bühne für das chinesische Schattentheater

Abb. 92: Skizze einer Figur für das chinesische Schattentheater
Abb. 93 zeigt eine einfache Dimmerschaltung mit nur wenigen Bauteilen zur Ansteuerung von 10 Hochleistungs-LEDs. Das IC LT3590 ist ein spezieller LED-Treiber von Linear Technology, mit dem man LEDs bis zu einem Strom von maximal 50 mA betreiben kann. Über den CTRL-Eingang wird der LED-Strom mithilfe eines Spannungsteilers eingestellt; das Spannungsintervall erstreckt sich von 0,1 V bis 1,25 V. Bei der gezeigten Dimensionierung ergibt sich ein Stromintervall von 0 bis 20 mA. Zur Ansteuerung wird eine konstante Zenerspannung von 5 V verwendet und mit dem Spannungsteiler P1 und P2 heruntergeteilt. Zum Abgleich dreht man zunächst das Poti P2 auf den Maximalwert und stellt dann das Trimmpoti P1 so ein, dass am Schleifer von P2 1,25 V anliegen. Jetzt kann man mit P2 die Steuerspannung am CTRL-Eingang des ICs im Intervall 0 bis 1,25 V einstellen. Bei einer Spannung größer als 1,25 V wird der LED-Strom auf 20 mA begrenzt und bei einer Spannung von 0 bis 0,1 V fließt kein LED-Strom.

Beim echten chinesischen Schattentheater werden neben Lichtvariationen auch häufig Musik- und Geräuscheffekte benutzt. Die gespielten Stücke reichen von der ernsten Oper bis hin zur Komödie, ganz nach Belieben. Neben der Literatur liefert auch das Internet eine Fülle an weiteren Informationen, z. B. [4].

Abb. 93: Dimmer für 10 LEDs
6.4 Experimentierkasten mit LEDs

Abb. 94: Alukoffer, (a) Außenansicht und (b) Innenansicht
Abb. 95: Vorschlag für die Anordnung der einzelnen Elemente im Experimentierkasten:
1. Drehpoti I mit Skala
2. Drehpoti II mit Skala
3. Drehkondensator mit Skala
4. Relais
5. E-Motor mit Drehscheibe
6. Buchsen
7. Messinstrumente
8. Taster
9. Lautsprecher
10. Netzgerät
11. Netzkabel
12. Fach für elektronische Bauteile
13. Steckplatte
14. Fach für Netzkabel

Neben dem Netzgerät wird auf eine Montageplatte die Steckplatte befestigt. Die im Handel erhältlichen Steckplatten sind in der Regel zusammensteckbar, sodass die Gesamtfläche den individuellen Bedürfnissen angepasst werden kann. Außerdem darf ein kleines Kunststoffgehäuse mit Deckel nicht fehlen, das als Aufbewahrungsbox für die steckbaren Bauteile (Widerstände, Kondensatoren, ICs, LEDs usw.) dient.
Abb. 96: Schaltplan eines Universalnetzgeräts für den Experimentierkasten
6.5 Puppenhaus

Abb. 97: Ein Puppenhaus von damals

6.6 Modelleisenbahn

Zum Einsatz von LEDs bei der Modelleisenbahn (siehe Abb. 98) gibt es bereits spezielle Literatur. Dieses Thema ist sehr umfangreich und wird deshalb im Rahmen dieses Buchs nur kurz angerissen.

Auch die Modelleisenbahn ist einem technologischen Wandel unterworfen. Wo früher kleine Glühlämpchen verwendet wurden, kommen heute LEDs zum Einsatz. LEDs werden z. B. für

1. Automatische Waggonbeleuchtung
2. Lokomotivenbeleuchtung
3. Landschaftsgestaltung
4. Reklamebeleuchtung
5. Tunnelbeleuchtung
6. und noch viel mehr

eingesetzt.
Der Fachhandel bietet zahlreiche Utensilien, die man früher selbst herstellen musste. Aber auch heute gibt es noch Liebhaber, die nicht auf gekaufte Fertigware zurückgreifen möchten, sondern möglichst viel selbst machen.

Abb. 98: Stellvertretend für das Thema Modelleisenbahn: (a) Lokomotive, (b) Eisenbahntunnel und (c) Landschaft mit Bauernhaus

7 Gartenprojekte

7.1 Beleuchtung für Gartenzwerge

Auch wenn das Design bei Tageslicht zum Ambiente passen mag, ist man häufig bei Nacht enttäuscht, wenn die Leuchte nicht hell genug erstrahlt (siehe Abb. 101) und auch nicht lange genug leuchtet. Abhilfe schaffen hier im Wesentlichen drei Lösungen:

1. Ersatz durch eine hocheffiziente LED
 Allerdings muss man auch auf den Rest der Beschaltung achten (Vorwiderstand bzw. Stromkonstanter etc.) und diese entsprechend anpassen.

2. Austausch oder Integration zusätzlicher größerer Solarzellenflächen (Vorsicht: auf maximale Spannung achten!)
 Auch hier muss man auf die restliche Elektrik Rücksicht nehmen und sie entsprechend anpassen.

3. Energiespeicher erneuern oder durch einen besseren austauschen
 Wird ein anderer Energiespeicher verwendet, muss man unter Umständen auch die restliche Elektrik anpassen.

Mit diesen Tricks kann man sowohl die Leuchtstärke als auch die Leuchtdauer optimieren (siehe Abb. 102).
Abb. 99: Ein paar Beispiele für solarbetriebene Gartenleuchten

Abb. 100: Hier steckt ein gebogener Stab im Boden und die solarbetriebene Gartenleuchte ist oben am Stab eingehängt. (a) Vorderansicht und (b) Seitenansicht

Abb. 101: Wenn die Solarzellen nicht genügend Energie liefern, bleibt die Lampe dunkel.

Abb. 102: Da fühlen sich nicht nur Gartenzwerge wohl.
7.2 Solaraggregat für den Garten

Wer eine größere Gartenleuchte betreiben möchte, kann jedes Betriebsmittel mit einer Solarzelle versehen (bzw. fertig konfektionierte Ware kaufen) oder eine zentrale Photovoltaik-Anlage im Garten aufstellen. Auch für solche Fälle gibt es bereits fertige Aggregate, wie z. B. Minisolaranlagen (siehe Abb. 103) für den Garten oder eine Jacht. Man kann auch herkömmliche Solarmodule passender Größe auf einem Pfosten im Garten installieren.

Abb. 103: Solarmodule, die auch für den Garten geeignet sind

17 Stichwortverzeichnis

A
Acrylglasblöcke 49
Acrylglas-Quader 35
Arbeitssicherheit 19, 107
Aroma-Ofen 42
Augenlinse 20

B
Bauklötze 49
Beleuchtungsstärke 100
Berufsgenossenschaft 20
Blinker 69
Blumenleuchte 46
Bremslicht 69
Buddelschiff 29

C
Chinesisches Schattentheater 77

D
Datenblatt 14
Dekorationsgegenstand 29, 35, 39, 65
Dreirad 68
Durchlassspannung 14
Durchlassstrom 14

E
Elektrischer Strom 111
Elektrische Spannung 111

F
Experimentierkasten 81
Feld 111
Flasche 29
Frequenzweichen 27

G
Gartenbeleuchtung 86
Gartenprojekte 86
Gartenzwerge 86
Gesundheit 59
Glaskörper 20
Glühlampen 100
Graph des Widerstands 12
Graphisches Lösungsverfahren 13
Grenzwert 14
Grundlagen 5, 10

H
Halbleiterlaser 20
Halogenlampen 100
Hautverbrennungen 20
HF 111
HiFi-Anlage 26
Hinweistafeln 36
Hornhaut 20

I
Influenz 111
17 Stichwortverzeichnis

K
Kennlinie 14, 15, 16, 17, 18, 19
Kerzenlicht 39
Klemmprüfspitzen 30
Koordinatensystem 12
Kuchenbackform 104

L
Ladung 111
Laserlichtquellen 20
LED 13
LED-Herz 96
LED-Leuchte 103
LED-Strahler 46, 47, 48, 51, 78, 104, 107, 140, 141
LED-Uhr 29
Leistung 14
Leitwert 10
Leuchtdiode 13
Lichtorgel 26
Lichtschlauch 91
Lichtstärke 20, 91, 111
Lichtstrom 100
low-current LEDs 24, 40, 96
Luftballon 97

M
Marderschreck 89
Mehrfarbenbeleuchtung 34
Mikroschalter 21
Miniaturvitrine 33
Minisolaranlagen 88
Minnizangen 32
Modellbau 75
Modelleisenbahn 84

N
Netzhautablösung 20
Netzhautverbrennung 20
Notleuchten 103
Nummernschild 73
O
Oszillogramm 111
P
Party 96
Plasma 111
Polarität 13
Pseudotachometer 71
Puppenhaus 84
R
Radiowecker 29, 32
Raumaufteilungen 49
Reihenschaltung 11, 12, 13, 17, 18, 37
S
Scheinwerfer 71
Sektflasche 43
Selbstentladung 111
Sicherheit 103
Signalleuchten 103
Solaraggregat 88
Spannung 10
Spielzeuge 68
Strom 10
Stromversorgung 73
Superhelle LEDs 19
T
Tachometer 71
<table>
<thead>
<tr>
<th>Stichwort</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tassenuntersetzer</td>
<td>21, 23</td>
</tr>
<tr>
<td>Teelicht</td>
<td>43</td>
</tr>
<tr>
<td>Temperaturdetektor</td>
<td>23</td>
</tr>
<tr>
<td>Temperatursensor</td>
<td>24</td>
</tr>
<tr>
<td>Treppenaufgang</td>
<td>51</td>
</tr>
<tr>
<td>Trübungen</td>
<td>20</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Uhren-IC</td>
<td>29</td>
</tr>
<tr>
<td>Unfallverhütungsvorschrift</td>
<td>20</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VDE</td>
<td>20</td>
</tr>
<tr>
<td>Vitrine</td>
<td>33, 35, 76, 77</td>
</tr>
<tr>
<td>Vorwiderstand</td>
<td>15, 16, 17, 29, 35, 40, 43, 46, 60, 76, 86, 94, 96</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Wandschmuck</td>
<td>105</td>
</tr>
<tr>
<td>Wegweiser</td>
<td>36</td>
</tr>
<tr>
<td>Werkzeuge</td>
<td>30</td>
</tr>
<tr>
<td>Widerstand</td>
<td>10, 11, 12, 13, 16, 17, 27</td>
</tr>
<tr>
<td>Widerstandsgerade</td>
<td>12</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X-Block Technologie</td>
<td>49</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zimmerbeschriftungen</td>
<td>36</td>
</tr>
</tbody>
</table>
Selbstbauprojekte mit Leuchtdioden

In diesem Buch erhalten Sie viele Ideen für Anwendungen mit verschiedenen Typen von Leuchtdioden. Neben den Grundlagen zur Handhabung von LEDs werden in 50 Selbstbauprojekten diverse originelle und kreative Anwendungsmöglichkeiten für Haus, Garten und Hobby vorgestellt.

Aus dem Inhalt:
Allgemeines über LEDs • Nützliches für den Hausgebrauch • Spielzeuge mit LEDs selbst gebaut • Gartenprojekte mit LEDs selber bauen • Partylaune mit LEDs • Sicherheit mit LEDs • Futuristische Wand- und Deckengestaltung selbst gemacht

ISBN 978-3-7723-4379-7
EUR 19,95