dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Magnetobiology - Underlying Physical Problems

Vladimir N. Binhi

 

Verlag Elsevier Trade Monographs, 2002

ISBN 9780080535739 , 473 Seiten

Format PDF, ePUB, OL

Kopierschutz DRM

Geräte

215,00 EUR


 

1

INTRODUCTION


V. Nabokov, The Gift,     There were also two choruses, one of which somehow managed to represent the de Broglie’s waves and the logic of history, while the other chorus, the good one, argued with it

Magnetobiology is a new multidisciplinary domain with contributions coming from fields as diverse as physics and medicine. Its mainstay, however, is biophysics. Magnetobiology has only received a remarkable impetus in the recent two decades. At the same time magnetobiology is a subject matter that during the above relatively long time span failed to receive a satisfactory explanation. There is still no magnetobiological theory, or rather its general physical treatments, or predictive theoretical models. This is all due to the paradoxical nature of the biological action of weak low-frequency magnetic fields, whose energy is incomparable by far with the characteristic energy of biochemical transformations. This all makes the very existence of the domain quite dubious with most of the scientific community, despite a wealth of experimental evidence.

A large body of observational evidence gleaned over years strongly suggests that some electromagnetic fields pose a potential hazard to human health and are a climatic factor that is of no less significance than temperature, pressure, and humidity. As more and more scientists become aware of that fact, studies of the mechanisms of the biological action of electromagnetic fields become an increasingly more topical issue.

There being no biological magnetoreceptors in nature, it is important to perceive the way in which the signal of a magnetic field is transformed into a response of a biological system. A low-frequency magnetic field permeates a living matter without any apparent hindrances. It affects all the particles of the tissue, but not all of the particles are involved in the process of the transferring of information about the magnetic field to the biological level. Primary processes of the interaction of a magnetic field with matter particles, such as electrons, atoms, and molecules, are purely physical processes. Charged particles of living matter, ions, that take part in biophysical and biochemical processes seem to be intermediaries in the transfer of magnetic field signals to the next biochemical level. Such a subtle regulation of the activity of proteins of enzyme type, affected via biophysical mechanisms involving interim ions, shifts the metabolic processes. Beginning with that level one can gauge the action of a magnetic field from the changes in metabolic product densities.

The biological effects of a magnetic field are often observed from the life-support parameters and the behavior of individuals and populations. Experiments, as a rule, boil down to the observation of relations between an external magnetic field and the biological effects it causes. Intermediary levels of the organization of a living system, such as biophysical, biochemical, and physiological ones, appear to lie outside the experimental range, but anyway they affect the experimental results. We thus end up having a kind of a cause-and-effect black box with properties beyond our control. This does not allow any cause–effect relations to be worked out completely. At the same time, there is no practical way to observe the result of the action of weak magnetic fields at the level of individual biochemical reactions or biophysical structures using physical or chemical methods. Magnetobiology is thus fraught with practical difficulties caused by the fact that it necessarily combines issues of physics, biophysics, biochemistry, and biology.

In addition to an analytical review of magnetobiological studies, the book also provides the first detailed description of the effect of the interference of quantum ion states within protein cavities. Using the Schrödinger and Pauli equations, a treatment is given of ion dynamics for idealized conditions and for parallel magnetic fields, as well as for a series of other combinations of magnetic and electric fields. The treatment takes into consideration the ion nuclear spin and the non-linear response of a protein to the redistribution of ion probability density. Formulas are obtained for the magnetic-field-dependent component of the dissociation probability for an ion–protein complex. The principal formula that gives possible magnetobiological effects in parallel DC HDC and AC HAC magnetic fields has the form1

Here m is the magnetic quantum number, Δm = m — m’, Ξ = TΩc is a dimensionless parameter that depends on the properties of an ion–protein complex, ωc = qHDC/Mc is the cyclotron frequency of an ion, f’ = ω/ωs and h’ = HAC/HDC are the dimensionless frequency and amplitude of the variable components of a magnetic field, and Jn is the nth order Bessel function. The elements amm’ are constant coefficients that define the initial conditions for an ion to stay in a cavity. The natural frequency and amplitude interference spectra are worked out for a wide variety of magnetic conditions, including those of pulsed magnetic fields (MFs), for a “magnetic vacuum”, subjected to natural rotations of macromolecules, etc. They show a high level of agreement with available experimental data.

The interference of quantum states of the molecules rotating inside protein cavities, i.e., the interference of molecular gyroscopes, is considered. The properties of molecular gyroscopes are a consistent basis for explaining the physical mechanism of the non-thermal resonance-like biological effects of EMFs, and for solving the so-called “kT problem”.

1.1 AN OVERVIEW OF MAGNETOBIOLOGICAL ISSUES


Unlike biomagnetism, which studies the MFs produced by various biological systems (Vvedenskii and Ozhogin, 1986; Kholodov et al., 1990; Hämäläinen et al., 1993; Baumgartner et al., 1995), magnetobiology addresses the biological reactions and mechanisms of the action of primarily weak, lower than 1 mT, magnetic fields. Recent years have seen a growing interest in the biological actions of weak magnetic and electromagnetic fields. “Microwave News”, published in the USA, provides a catalogue of hundreds of Internet links to organizations that are directly concerned with electromagnetobiological studies, http://www.microwavenews.com/www.html.

Electromagnetobiology is a part of a more general issue of the biological effectiveness of weak and hyperweak physico-chemical factors. It is believed that the action of such factors lies below the trigger threshold for protective biological mechanisms and is therefore prone to accumulating at the subcellular level and is likely at the level of genetic processes.

Electromagnetobiological research received an impetus in the 1960s when Devyatkov’s school developed and produced generators of microwave EM radiations. Almost immediately it was found that microwaves caused noticeable biological effects (Devyatkov, 1973). Those works were reproduced elsewhere. Of much interest was the fact that more often than not the radiations concerned had a power too low to cause any significant heating of tissues. At the same time, the radiation energy quantum was two orders of magnitude lower than the characteristic energy of chemical transformations KT. Also, the effects were only observed at some, not all, frequencies, which pointed to a non-thermal nature of the effects. The action of microwaves was also dependent on the frequency of low-frequency modulation. Therefore, as early as the 1980s reliable observations of bioeffects of low-frequency 10–100 Hz magnetic fields themselves were obtained. This is important, since that frequency range covers frequencies of industrial and household electric appliances.

Interest in magnetobiology stems predominantly from ecological considerations. The intrusion of man into natural processes has reached a dangerous level. The environment is polluted with the wastes of industrial and household activities. We are also witnessing a fast buildup of electromagnetic pollution. In addition, there is still no clear understanding of the physico-chemical mechanisms for the biological action of hyperweak natural and artificial agents. We have thus a paradox on our hands. That is to say, these phenomena are not just unaccountable, they seem to be at variance with the current scientific picture of the world. At the same time, a wealth of observational and experimental data has been accumulated, thus pointing to the real nature of the phenomenon. It follows that the biological action of hyperweak agents is a fundamental scientific problem with a host of applications.

What factors can be called hyperweak? An intuitively acceptable threshold is dictated by common sense. If an effect, or rather a correlation, observed when exposed to some small signal is inconsistent with current views, i.e., we have a that-is-impossible situation, then the signal can be referred to as hyperweak. For electromagnetic fields (EMFs) within a low-frequency range it is a background level, which is engendered by industrial or even household electric devices (Grigoriev, 1994). The diagram in Fig. 1.1 shows the relative level of magnetic fields...