Medical Mathematics and Dosage Calculations for Veterinary Technicians

Third Edition

Robert Bill

WILEY Blackwell

Medical Mathematics and Dosage Calculations for Veterinary Technicians

Medical Mathematics and Dosage Calculations for Veterinary Technicians

Third Edition
Robert Bill
Professor Emeritus
College of Veterinary Medicine
Purdue University
West Lafayette, Indiana, USA

WILEY Blackwell

This edition first published 2019

© 2019 John Wiley \& Sons, Inc.

Edition History

Iowa State University Press (1e, 2000); Wiley-Blackwell (2e, 2009)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Robert Bill to be identified as the author of this work has been asserted in accordance with law.

Registered Office(s)

John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any i mplied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Bill, Robert, author.
Title: Medical mathematics and dosage calculations for veterinary technicians / Robert Bill.
Other titles: Medical mathematics and dosage calculations for veterinary professionals
Description: 3rd edition. | Hoboken, NJ : John Wiley \& Sons, Inc., 2019. | Includes index. |
Preceded by Medical mathematics and dosage calculations for veterinary professionals /
Robert Bill. 2nd ed. 2009. |
Identifiers: LCCN 2018032830 (print) | LCCN 2018033237 (ebook) | ISBN 9781118924136 (Adobe PDF) |
ISBN 9781118924143 (ePub) | ISBN 9781118835296 (pbk.)
Subjects: | MESH: Veterinary Drugs-administration \& dosage | Drug Dosage Calculations | Mathematics | Handbooks
Classification: LCC SF917 (ebook) | LCC SF917 (print) \| NLM SF 919 | DDC 636.089/51-dc23
LC record available at https://lccn.loc.gov/2018032830
Cover Design: Wiley
Cover Images: © DenGuy/E+/Getty Images; © aydinmutlu/E+/Getty Images; © SchulteProductions/E+/Getty Images
Set in 10/12pt Warnock by SPi Global, Pondicherry, India

Contents

About the Companion Website $i x$
Section I Review of Math Fundamentals 1
1 Math Fundamentals: Self-assessment 3
Self-assessment Exercises 3
2 Review of Key Medical Math Fundamentals: Decimals 11
2.1 Relative Values of Decimal Numbers 11
2.2 Properly Communicating Decimal Numbers 12
2.3 The Rules for the Use of Zero in Decimal Numbers 13
2.4 Comparing Decimals - Which Number Is Larger? 14
2.5 A Quick Guide to Using Scientific Notation 15
2.6 Tips for Adding and Subtracting Decimal Numbers 17
2.7 Tips for Multiplying Decimal Numbers 18
2.8 Tips for Dividing Decimal Numbers 19
2.9 Accurately Rounding Decimal Numbers 22
2.10 Chapter 2 Practice Problems 23
3 Review of Key Math Fundamentals: Fractions 27
3.1 Fundamentals of Working with Medical Math Fractions 27
3.2 Working with Improper Fractions, Proper Fractions, and Mixed Numbers 28
3.3 Equivalent Fractions in Medical Math 29
3.4 Simplifying or Reducing Fractions 30
3.5 Adding Fractions in Medical Math 31
3.6 Subtracting Fractions in Medical Math 33
3.7 Multiplying Fractions in Medical Math 34
3.8 Dividing Fractions in Medical Math 37
3.9 Conversion Between Fractions and Decimals 39
3.10 Rounding Fractions in Medical Math 41
3.11 Chapter 3 Practice Problems 42
4 Review of Key Math Fundamentals: Percentages 47
4.1 Conversion of Percentages to Fractions 47
4.2 Conversion Between Percentages and Decimal Numbers 48
4.3 Conversion of Fractions to Percentages 49
4.4 Finding Percentages of a Whole 49
4.5 Subtracting or Adding the Percentage Fraction of the Whole 50
4.6 Determining Percentages Represented by the Fractional Component 52
4.7 Chapter 4 Practice Problems 53
5 Review of Key Math Fundamentals: Finding the Unknown X 57
5.1 Analyzing the Problem and Setting up the Equation 57
5.2 Addition: Moving Numbers to the Other Side of the Equation 58
5.3 Subtraction: Moving Negative Numbers or a Negative Unknown X 59
5.4 Finding the Unknown X in Multiplication Problems 62
5.5 When the Unknown X is in the Denominator 67
5.6 Finding the Unknown X in Division Problems 70
5.7 Unknown X Involving Division of Fractions 71
5.8 Chapter 5 Practice Problems 74
Section II Understanding Units and Labels 77
6 Measurements Used in Veterinary Medicine 79
6.1 Metric Units: The Basics 79
6.2 Metric Units of Weight and Mass 80
6.3 Metric Units of Volume 82
6.4 Metric Units of Length 83
6.5 Metric Units of Concentration and Density 84
6.6 Nonmetric Units: Household, Apothecary, and Avoirdupois Units 85
6.7 Conversion between Quantities of Volume and Mass: Special Cases 87
6.8 Converting Between Units: The Proportion and Cancel-Out Methods 87
6.8.1 Using the Proportion Method 88
6.8.2 Using the Cancel-out Method 91
6.9 Estimating the Answer: Does Your Answer Make Sense? 93
6.10 Chapter 6 Practice Problems 96
$7 \quad$ Understanding Drug Orders and Drug Labels 99
7.1 The Dosage Regimen 99
7.1.1 The Dosage Regimen: Doses and Dosages 100
7.1.2 The Dosage Regimen: The Route of Administration 100
7.1.3 The Dosage Regimen: The Dose Interval 102
7.2 The Dosage Form 102
7.3 The Best Practices for Writing Drug Orders 103
7.3.1 Handling Unclear Drug Orders 104
7.4 Understanding the Drug Label: The Drug Names 104
7.5 Understanding the Drug Label: Concentrations and Dosage Forms 107
7.6 Understanding the Drug Label: Regulatory Label Information 109
7.6.1 Controlled Substances and Prescription Labeling 110
7.6.2 Prescription, Legend, and Over-The-Counter Label Indicators 110
7.7 Understanding the Drug Label: Hazards, Storage, and Expiration Dates 110
7.7.1 Storage Information on the Label 111
7.7.2 Expiration Dates 111
7.8 Chapter 7 Practice Problems 112
Section III Dose Calculations 115
8 Basic Dose Calculations 117
8.1 The Basic Steps in Dose Calculation 117
8.2 Converting the Animal's Weight into the Units Needed to Calculate the Dose 119
8.3 Determining the Dose for the Patient 120
8.4 Determining the Amount of Dose Forms Needed per Dose 122
8.5 Determining the Number of Dosage Forms Needed to Complete the Dosage Regimen 125
8.5.1 The Most Common Mistake Made when Determining the Total Number of Units to Be Dispensed 126
8.6 Determining the Cost for Dispensed Medication 128
8.7 Using a Syringe with Liquid Dosage Formulations 129
8.7.1 Syringes in Veterinary Medicine 130
8.7.2 Measuring Fluid within the Syringe 131
8.8 Chapter 8 Practice Problems 132
9 Intravenous Infusion Calculations 137
9.1 Performing IV Infusions and the Use of IV Administration Sets 137
9.2 The Basics of Setting IV Fluid Rate Using the Drip Chamber 138
9.3 Setting the IV Fluid Rate: Constant Rate Infusions (CRI) 142
9.4 Calculating Infusion Rates when Adding Drugs to IV Fluids 144
9.5 Calculating Standard IV Fluid Rates 147
9.6 Calculating IV Fluid Rate Stop Times 151
9.7 Chapter 9 Practice Problems 153
Section IV Other Calculations Used in Veterinary Medicine 157
10 Ratios, Proportions, and Dilutions 159
10.1 Ratios and Proportions 159
10.2 The Basics of Making a Dilution 161
10.3 Making Serial Dilutions 162
10.4 Calculating Diluent Needed to Deliver a Specific Dose or Drug Concentration 163
10.5 Calculating Dilutions Using the $V_{1} \times C_{1}=V_{2} \times C_{2}$ Formula 164
10.6 Diluting Percent Solutions 166
10.7 Diluting Solutions Expressed as Ratios 167
10.8 Making Dilutions with Mixed Types of Concentrations 168
10.9 Chapter 10 Practice Problems 169
11 Additional Calculations Used by Veterinary Professionals 171
11.1 Mean, Median, Mode, and Range 171
11.2 Converting between Fahrenheit and Celsius 175
11.3 Roman Numerals 179
11.4 Chapter 11 Practice Problems 181
Appendix: Answers to Practice Problems 183
Index 223

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/bill/calculations
The website includes:

- Answer keys to problems
- PowerPoint files of all figures from the book for downloading

Section I

Review of Math Fundamentals

Math Fundamentals

Self-assessment

OBJECTIVES

The student will be able to:
conduct a self-assessment, and
2) identify areas needed for review.

In a medical situation the most beneficial drug can be rendered worthless or dangerous if the veterinarian or veterinary technician does not accurately calculate the dose. As many veterinary professionals can testify, it is not enough to just have a superficial understanding of dosage calculation because superficial knowledge often fails during an emergency situation. The skill of accurately calculating drug dosages or making correct medical math calculations must be deeply ingrained and practiced to be consistently reliable.

Another obligation of professionals is to recognize and accurately identify the limits of their knowledge and to strengthen the weaker areas of their skills or knowledge. To help you define the areas of math and dosage calculation that you need to refresh or review, complete the following self-assessment exercises. Note that some of the exercises require you to perform the tasks without a calculator. Although a calculator should be used to carry out most dosage calculations, it is also important that the veterinary professional understands how to perform the basic operations manually. They will thereby be able to recognize when an answer to a problem is obviously not accurate (e.g. when the decimal point is misplaced by 1 or 2 places).

For those sections of the self-assessment that you identify as areas where a review would be useful, work through the chapters and sections of the book to which that section of the self-assessment exercise refers.

Self-assessment Exercises

1 Write each of the following numbers in scientific notation:
A) 23
B) 132
C) 522178
D) 0.2
E) 0.0452
F) 0.000067
G) 94.0023
H) 897.01000

2 Add or subtract the following decimal numbers, without a calculator:
A) $1.5+4=$
B) $9.7+1.9=$
C) $6.55+7.43=$
D) $0.42+0.09=$
E) $0.009+4.0=$
F) $7.5-2.5=$
G) $9.0-3.9=$
H) $23.125-1.50=$
I) $0.551-0.095=$
J) $0.00352-0.0009=$
K) The veterinarian needs a mixture of the following three drugs to be administered as an anesthetic cocktail: 0.4 mL Drug A, 0.35 mL Drug B, and 1.24 mL of Drug C. What is the final volume of combined drug to be given?
L) Four gerbils are weighed individually. Their masses are $82.0 \mathrm{~g}, 76.5 \mathrm{~g}, 92.8 \mathrm{~g}$, and 81.9 g . What is the total weight of all four gerbils?
M) The normal dose for an animal is calculated as 48.7 mg . However, the veterinarian wants to adjust the dose because of changes in the animal's physiology due to the disease being treated. The dose needs to be decreased by $10 \%(4.87 \mathrm{mg})$. What is the new dose need for this patient?
N) The veterinarian gives an oral drug order to be added to a bag of IV fluids as follows: "Give twentythree point four mL of Drug A and three point one two five mL of Drug B." What is the total volume (mL) of drugs being added to this bag of IV fluids?

3 Multiply or divide the following decimal numbers, without a calculator:
A) $2.5 \times 5=$
B) $3.0 \times 8.35=$
C) $24.75 \times 12.35=$
D) $0.02 \times 15.5=$
E) $0.003 \times 0.0125=$
F) $15 \div 2.5=$
G) $2.5 \div 1.5=$
H) $35 \div 0.5=$
I) $0.25 \div 0.125=$
J) $0.010 \div 0.0025=$
K) An animal is dispensed 2.5 mg tablets to be given twice daily for six days. What is the total mass of drug that has been dispensed? Give your answer in mg .
L) The veterinarian dispenses 1200 mL of medication to be given equally to 8 calves. How much does each calf get?
M) A laboratory animal colony needs to treat a parasite problem by giving 2.3 mg of a drug to each of the 94 rats in the colony. How many mg of drug is needed to do this?
N) A total of 560 mg of drug needs to be equally divided into two doses per day for a period of one week. How much drug is given in each dose?
O) The veterinarian gives the following drug order: "Dispense one and one-tenth mL per day for ten days." What total volume (mL) is to be dispensed?
P) A veterinarian gives the following oral drug order: " 42.75 mL of drug needs to be divided into equal doses for these three cats." How much does each cat get?

4 Round the following decimal numbers to the nearest $1 / 100$ th and the nearest $1 / 10$ th, without a calculator:
A) $20.394=$
B) $9.682=$
C) $3.233=$
D) $29.452=$
E) $413.675=$
F) $5.956=$
G) $36.78922=$
H) $0.255=$
I) $0.093=$
J) $1200.01922=$
K) The veterinarian gives the following oral drug order: "Give fifteen point seven five mg but round it to the nearest tenth." How much do you give?
L) The dose calculation for a patient is 37.56 mg . What would the dose be, correctly rounded to a whole number? Is this dose closer to the 40 mg tablet size or the 35 mg tablet size?

5 Simplify the following fractions to their lowest form (e.g. 6/8 =3/4), without a calculator:
A) $\frac{2}{10}=$
B) $\frac{4}{16}=$
C) $\frac{3}{12}=$
D) $1 \frac{6}{8}=$
E) $5 \frac{4}{32}=$

6 Add or subtract the following fractions, without a calculator:
A) $\frac{1}{4}+\frac{3}{4}=$
B) $\frac{1}{16}+\frac{3}{32}=$
C) $\frac{1}{6}+\frac{2}{5}=$
D) $1 \frac{3}{4}+2 \frac{1}{2}=$
E) $5 \frac{2}{3}+4 \frac{7}{8}=$
F) $\frac{1}{2}-\frac{1}{4}=$
G) $\frac{2}{3}-\frac{1}{6}=$
H) $1 \frac{3}{4}-\frac{7}{8}=$
I) $3 \frac{15}{16}-2 \frac{3}{8}=$
J) $45 \frac{1}{5}-33 \frac{7}{8}=$

7 Multiply the following fractions, without a calculator:
A) $\frac{1}{2} \times \frac{1}{2}=$
B) $\frac{3}{4} \times \frac{1}{2}=$
C) $\frac{12}{16} \times \frac{3}{4}=$
D) $1 \frac{1}{2} \times \frac{7}{8}=$
E) $\frac{11}{16} \times \frac{3}{4}=$
F) $2 \frac{3}{4} \times 4 \frac{1}{2}=$
G) $5 \frac{4}{7} \times 1 \frac{3}{4}=$
H) $10 \frac{3}{8} \times 9 \frac{1}{3}=$

8 Divide the following fractions:
A) $\frac{1}{4} \div \frac{1}{2}=$
B) $\frac{1}{3} \div \frac{1}{2}=$
C) $\frac{2}{4} \div \frac{3}{9}=$
D) $2 \div \frac{1}{4}=$
E) $2 \frac{1}{2} \div \frac{1}{2}=$
F) $3 \frac{3}{4} \div \frac{1}{16}=$
G) $22 \frac{4}{8} \div \frac{2}{32}=$
H) $125 \frac{1}{5} \div \frac{4}{25}=$

9 Convert the following fractions to decimal numbers (e.g. $1 / 2=0.5$):
A) $\frac{2}{10}=$
B) $\frac{14}{28}=$
C) $\frac{3}{21}=$
D) $1 \frac{1}{2}=$
E) $4 \frac{5}{6}=$
F) $15 \frac{7}{16}=$

10 Convert the following decimal numbers to the common fraction (e.g. $0.5=1 / 2$):
A) $0.25=$
B) $0.333=$
C) $0.75=$
D) $0.125=$
E) $1.5=$
F) $2.500=$

11 Convert the following percentages to commonly used fractions (e.g. $50 \%=1 / 2$):
A) $25 \%=$
B) $75 \%=$
C) $33.3 \%=$
D) $10 \%=$
E) $80 \%=$

12 Convert the following percentages to decimal numbers:
A) $25 \%=$
B) $79 \%=$
C) $100 \%=$
D) $6 \%=$
E) $0.2 \%=$
F) $0.0087 \%=$

13 Convert the following decimal numbers to percentages:
A) $0.5=$
B) $0.45=$
C) $1.00=$
D) $0.103=$
E) $0.90023=$

14 Convert the following fractions to percentages (e.g. $1 / 2=50 \%$):
A) $\frac{3}{4}=$
B) $\frac{8}{10}=$
C) $\frac{15}{45}=$
D) $\frac{10}{10}=$
E) $\frac{1}{1000}=$

15 Answer the following percentage questions:
A) What is 25% of a 200 mg dose?
B) A veterinarian wants to use 50% of 25 mg calculated dose. How much drug (in milligrams) would they be giving?
C) What percentage is 80 pounds of 400 pounds?
D) A veterinary technician has drawn up 15 mg of the total 60 mg drug dose that they need to give an animal. What percentage of the total dose have they drawn up so far?

16 Solve for the missing X in each of the following:
A) $15+X=30+45$
B) $5+10=7+X$
C) $X+2.5=5.25+1.05$
D) $40-X=65-38$
E) $6.5-2.3=7.8-X$
F) $X-14.2=53.4-41.9$

17 Solve for the missing X in each of the following:
A) $2 \times 6=3 \times X$
B) $30 \times X=120 \times 2$
C) $X \times 25.5=43.2 \times 12.25$
D) $25 \div 5=10 \div X$
E) $300 \div X=12.5 \div 8.125$
F) $X \div 25=0.5 \div 0.75$

18 Solve for the missing X in the following proportions:
A) $\frac{2}{8}=\frac{X}{16}$
B) $\frac{4}{16}=\frac{3}{X}$
C) $\frac{X}{32}=\frac{18}{9}$
D) $\frac{12}{2}=\frac{X}{6}$
E) $\frac{9}{X}=\frac{36}{12}$

Review of Key Medical Math Fundamentals

Decimals

OBJECTIVES

The student will be able to:
accurately communicate decimal numbers in writing and speaking,
2) add and subtract decimals,
3) multiply and divide decimals,
4) apply scientific notation, and
5) round numbers.

Drug dosages, concentrations of drugs in vials, and drug units are commonly expressed as decimal numbers. Therefore, it is imperative that the veterinary professional be able to accurately add, subtract, multiply, and divide using decimal numbers. It is assumed the reader has a working knowledge of using decimals; therefore, this chapter will focus on a quick review with an emphasis on where common dosage calculation errors occur.

2.1 Relative Values of Decimal Numbers

The decimal point, or "point," orients the reader to the values of the decimal number. Each space to the left of the decimal point increases by a power of 10 . Therefore, the first space to the left of the decimal point is "ones," the next space to the left is "tens," the next is "hundreds," and so on.

Each space to the right of the decimal point decreases by a power of 10 starting with "tenths." The second space to the right of the decimal point is the "hundredths," the next is "thousandths," and so on. Note that there are no "oneths" to the right of the decimal point and the first place to the right starts with "tenths." The numerals to the left of the decimal point are whole numbers $(5,62,379)$ and the numerals to the right of the decimal point represent decimal fractions (e.g. one tenth, four hundredths).

Notice how all decimal fractions end in "th(s)," such as "four tenths" or "one thousandth." Thus, the number 12.35 would contain the whole number " 12 " and the decimal fraction of "thirty-five hundredths."

The number shown in Figure 2.1 is 7842.125 and illustrates each of the places in the number.

[^0]Whole numbers

2.2 Properly Communicating Decimal Numbers

When reading a decimal number aloud, there are two ways to communicate the number. The number in Figure 2.1 can be read as either "seven thousand, eight hundred forty-two and one hundred twenty-five thousandths" or as "seven eight four two point one two five."

The first method is more formal and uses the word "and" to represent the decimal point. All units to the right of the decimal point are read as units of the farthest right place. Therefore, in the number above, there are " 125 thousandths." For the number "1.12," the value to the right of the decimal point would be read aloud as "twelve hundredths" because the farthest right place that has a number is the hundredths place. When the value of a decimal number is less than 1 , such as 0.5 , the number would be read only as "five tenths" without stating the zero in the ones place.

The second method for communicating decimal numbers tends to convey the information in a shorter and more concise manner. The numbers are read left to right with the decimal point being spoken as "point." No place values (hundreds, tenths, thousandths, etc.) are stated in this method. Therefore, " 234.56 " would simply be read aloud as "two three four point five six." In contrast to the first method above, where the zero is not read for numbers with a value less than 1 , in this second method the zero is communicated along with the "point." Thus 0.5 would be read as "zero point five." There are additional examples in Table 2.1.

Regardless of which method is used when a number is verbally communicated, it is essential that the number be communicated accurately. This can be a challenge when numbers are being communicated while masked for surgery or other procedures because the voice becomes muffled. It also becomes a challenge when communicating numbers by phone, particularly as cell phone reception can garble clear communication. In addition to the physical challenges with communicating numbers, some numbers sounds very similar to others, and the veterinary technician needs to be especially precise in communicating these numbers. It is a good practice to repeat any number that may be confusing, or to emphasize a key feature of the number, such as "One five POINT three," to make sure the recipient correctly receives the number. If there

Table 2.1 The correct way to read decimal numbers

36.89	"Thirty-six and eighty-nine hundredths" "Three six point eight nine"
0.9	"Nine tenths" "Zero point nine"
30.076	"Seventy-six thousandths" "Zero point zero seven six"
	"Thirty and eight hundredths" "Three zero point zero eight"

[^0]: Medical Mathematics and Dosage Calculations for Veterinary Technicians, Third Edition. Robert Bill. © 2019 John Wiley \& Sons, Inc. Published 2019 by John Wiley \& Sons, Inc.
 Companion website: www.wiley.com/go/bill/calculations

