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PREFACE 

Non-destructive testing aimed at monitoring, structural identification and diag-
nostics is of strategic importance in many branches of civil and mechanical en-
gineering. This type of tests is widely practiced and directly affects topical issues 
regarding the design of new buildings and the repair and monitoring of existing 
ones. The load-bearing capacity of a structure can now be evaluated using well-
established mechanical modelling methods aided by computing facilities of great 
capability. However, to ensure reliable results, models must be calibrated with ac-
curate information on the characteristics of materials and structural components. 
To this end, non-destructive techniques are a useful tool from several points of 
view. Particularly, by measuring structural response, they provide guidance on 
the validation of structural descriptions or of the mathematical models of material 
behaviour. 

Diagnostic engineering is a crucial area for the application of non-destructive 
testing methods. Repeated tests over time can indicate the emergence of pos-
sible damage occurring during the structure's lifetime and provide quantitative 
estimates of the level of residual safety. 

Of the many non-destructive testing techniques now available, dynamic meth-
ods enjoy growing focus among the engineering community. Conventional diag-
nostic methods, such as those based on visual inspection, thermal or ultrasonic 
analysis, are local by nature. To be effective these require direct accessibility of 
the region to be inspected and a good preliminary knowledge of the position of 
the defective area. Techniques based on the study of the dynamic response of 
the structure or wave propagation, on the contrary, are a potentially effective di-
agnostic tool. These can operate on a global scale and do not require a priori 
information on the damaged area. 

Recent technological progress has generated extremely accurate and reliable 
experimental methods, enabling a good estimate of changes in the dynamic be-
haviour of a structural system caused by possible damage. Although experimental 
techniques are now well-established, the interpretation of measurements still lags 
somewhat behind. This particularly concerns identification and structural diag-
nostics due to their nature of inverse problems. Indeed, in these applications one 
wishes to determine some mechanical properties of a system on the basis of mea-
surements of its response, in part exchanging the role of the unknowns and data 
compared to the direct problems of structural analysis. 

Hence, concerns typical of inverse problems arise, such as high nonlinear-
ity, non-uniqueness or non-continuous dependence of the solution on the data. 
When identification techniques are applied to the study of real-world structures. 



additional obstacles arise given the complexity of structural modelling, the inac-
curacy of the analytical models used to interpret experiments, measurement errors 
and incomplete field data. Furthermore, the results of the theoretical mathemat-
ical formulation of problems of identification and diagnostics, given the present 
state-of-knowledge in the field, focus on quality, while practical needs often re-
quire more specific and quantitative estimates of quantities to be identified. To 
overcome these obstacles, standard procedures often do not suffice and an individ-
ual approach must be applied to tackle the intrinsic nature of the problem, using 
specific experimental, theoretical and numerical methods. It is for these reasons 
that use of damage identification techniques still involves delicate issues that are 
only now being clarified in international scientific literature. 

The CISM Course ^^Dynamic Methods for Damage Detection in Structures'^ 
was an opportunity to present an updated state-of-the-art overview. The aim was 
to tackle both theoretical and experimental aspects of dynamic non-destructive 
methods, with special emphasis on advanced research in the field today. 

The opening chapter by Vestroni and Pau describes basic concepts for the 
dynamic characterization of discrete vibrating systems. Chapter 2, by Friswell, 
gives an overview of the use of inverse methods in damage detection and lo-
cation, using measured vibration data. Regularisation techniques to reduce ill-
conditioning effects are presented and problems discussed relating to the inverse 
approach to structural health monitoring, such as modelling errors, environmen-
tal effects, damage models and sensor validation. Chapter 3, by Betti, presents 
a methodology to identify mass, stiffness and damping coefficients of a discrete 
vibrating system based on the measurement of input/output time histories. Using 
this approach, structural damage can be assessed by comparing the undamaged 
and damaged estimates of the physical parameters. Cases of partial/limited in-
strumentation and the effect of model reduction are also discussed. Chapter 4, by 
Vestroni, deals with the analysis of structural identification techniques based on 
parametric models. A numerical code, that implements a variational procedure 
for the identification of linear finite element models based on modal quantities, is 
presented and applied for modal updating and damage detection purposes. Pseudo-
experimental and experimental cases are solved. Ill-conditioning and other pecu-
liarities of the method are also investigated. Chapter 5, by Vestroni, deals with 
damage detection in beam structures via natural frequency measurements. Cases 
of single, multiple and interacting cracks are considered in detail. Attention is 
particularly focussed on the consequences that certain peculiarities, such as the 
limited number of unknowns (e.g., locations and stiffness reduction of damaged 
sections), have on the inverse problem solution. The analysis of damage identifi-
cation in vibrating beams is continued in Chapter 6 by Morassi. Damage analysis 



is formulated as a reconstruction problem and it is shown that frequency shifts 
caused by damage contain information on certain Fourier coefficients of the un-
known stiffness variation. The rest of the chapter is devoted to the identification 
of localized damage in beams from a minimal set of natural frequency measure-
ments. Closed form solutions for certain crack identification problems in vibrating 
rods and beams are presented. Applications based on changes in the nodes of the 
mode shapes and on antiresonant data are also discussed. Chapter 7, by Testa, 
is on the localization of concentrated damage in beam structures based on fre-
quency changes caused by the damage. A second application deals with a crack 
closure that may develop in fatigue and the potential impact on damage detection. 
Chapter 8 proposes a paper by Cawley on the use of guided waves for long-range 
inspection and the integrity assessment of pipes. The aim is to determine the 
reflection coefficients from cracks and notches of varying depth, circumferential 
and axial extent when the fundamental torsional mode is travelling in the pipe. 
Chapter 9, by Vestroni and Vidoli, discusses a technique to enhance sensitivity 
of the dynamic response to local variations of the mechanical characteristics of a 
vibrating system based on coupling with an auxiliary system. An application to a 
beam-like structure coupled to a network of piezoelectric patches is discussed in 
detail to illustrate the approach. 

Antonino Morassi 
Fabrizio Vestroni 
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Elements of Experimental Modal Analysis 

Fabrizio Vestroni and Annamaria Pau 

Dipartimento di Ingegneria Strutturale e Geotecnica, University of Roma La Sapienza, Italy 

Abstract Fundamental concepts for the characterization of the dynamical response 
of SDOF and NDOF systems are provided. A description is given of the main 
techniques to represent the response in the frequency domain and its experimental 
characterization. Two classical procedures of modal parameter identification are 
outlined and selected numerical and experimental examples are reported. 

1 Dynamic Characterization of a SDOF 

The experimental study of a structure provides an insight into the real behavior of the 
system. In particular, the study of its dynamic response, exploiting vibration phenom-
ena, aims to determine the dynamic properties closely connected to the geometrical and 
mechanical characteristics of the system. Hence, some concepts of structural dynamics 
will be briefly summarized. It is assumed that the reader has had some exposure to the 
matter (Craig, 1981; Meirovitch, 1997; Ewins, 2000; Braun et al., 2001). 

The classical model of a single degree-of-freedom (SDOF) system is the spring-mass-
dashpot model of Figure 1, where the equation of motion and the steady-state solution 
is reported. Assuming a harmonic excitation, the frequency response function (FRF) 
H((jj) can be defined as the ratio between the amplitude of the steady-state response and 
the load intensity. The FRF shows that in a small range of the ratio UJ/UQ, when the 
frequency of the excitation approaches the natural frequency of the system, the response 
amplitude is much larger than the static response. This is called resonance. Furthermore, 
the amplitude of the steady-state response is linearly dependent on bothpo and H{u;). By 
knowing H{uj) the response of a SDOF system to a harmonic excitation can be estimated. 

In the real world, forces are not simply harmonic, being frequently periodic or ap-
proximated closely by periodic forces. A periodic function p{t) having period Ti can be 
represented as a series of harmonic components by means of its Fourier series expansion. 
As an example, in Figure 2, the Fourier series expansion is applied to a square wave. 
The Fourier series is convergent, i.e. the more terms used, the better the approximation 
obtained. 

Since the response of a SDOF system to a harmonic force is known and a periodic 
forcing function p{t) can be represented as a sum of harmonic forces, the response of the 
system u{t) to a periodic excitation can be obtained by exploiting the principle of effect 
superposition: 
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harmonic excitation 

P i't) = Po cos {ooit) or p {t) = po sin (uJit) 

equation of motion 

mu -i- cu-^ku = Po sin {uit) 

steady state response 

'̂  (0 = Po-ff (<̂ ) sin {uit - a) 

1 - ^ + 2C:5^ 
^H = 7 ft 

Figure 1. Response of a SDOF system to a harmonic excitation. 

oo 

p(t) = 5ZpnCOs(a;n^ + V?n), cĵ i = na;i (1.1) 
n = l 

oo 

tX ( f ) = ^ C/n COS {uJnt -^ ^n - OLn) (1.2) 

n=l 

In this case, too, a knowledge of E{uj) is sufEcient to predict the response of the system. 
The steady-state response of a SDOF system to a harmonic force can also be written 

in complex form, where the bar denotes complex quantities: 

^(^) = C/(a;)e^^* = F(a;)poe'"'* and E{i^) = -^ \ . (1.4) 
[l-(r)']+i(2Cr)' 

It is clear that the amplitude and phase of the steady-state response are determined from 
the amphtude and phase of the complex FRF. 
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periodic excitation T i , cji p {t) = ao + V^ an cos {nuit) + 2^ bn sin (nuJit) 
n = l n = l 

CXD 

example: square wave Ti = 1 p{t) = Y^ ^n sin (na;it) odd function 
n=l ,3 
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Figure 2. Fourier series expansion of a square wave. 

If the forcing function is periodic, the response can be written as: 

oo oo 

uit)= Yl C7„e^"-*= 5 ^ :ff(a;„)^„e^"-*. (1.5) 

When the excitation is non periodic, it can be represented by a Fourier integral, 
which is obtained from the Fourier series by letting the period Ti approach infinity. Let 
us define: 

Ti = — , cji = Aa;, ncoi = oon-

In the Fourier series 

oo . „ 

P{t)= Yl Pn M e'^-', p^ {un) = jrJ^P it) ^-iujnt dt 

n=—oo 

since Ti tends to infinity, pn is newly defined as: 

Au 
Pn (^n) = Tip^ {un) and p{t)= Y^ ir-Pn M e AnAujt 

(1.6) 

(1.7) 

(1.8) 
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When Ti —> oo, nAo; = uJn=^ becomes a continuous variable and Aa; becomes the 
differential cL;, then a Fourier transform pair is obtained: 

/

oo 

p {t)e~''^*dt direct Fourier transform (1.9) 

-oo 
r ^ 1 _ 

Pi^)~ / •r-P{co)e^^^duj inverse Fourier transform. (1-10) 
^ - o o 27r 

When the forcing function is non periodic, a relationship in the frequency domain between 
the response and the force can be obtained by applying the Fourier transform to each 
term of the motion equation: 

(-ma;2 + ioj + k) U (u) = P {ou) (1.11) 

where use is made of the following properties: 

/»00 

„ _ ^ 2 /•oo _ 2 _ 

U{uj) = - ^ u {t) e-'^'^^'dt = -^U (uj). (1.13) 
27r J_^ 27r 

The Fourier transform of the response is obtained as the product of the complex FRF 
and the Fourier transform of the excitation 

U{uj) = H{uj)P{uj). (1.14) 

Once U{uj) is known, the response in the time domain is given by the inverse Fourier 
transform: 

/

^ 1 _ 
^ _ C / ( ^ ) e « - / * d / . (1.15) 

In this case also, by knowing H(uj), the response to a generic excitation can be estimated. 
A significant relationship exists between the H{u:) and the unit impulse response h{t). 

The latter defines the SDOF response in the time domain to a forcing function equal to 
a Dirac delta. Since the Fourier transform of an impulse p{t)=S{0) is 

P M = ^ , (1.16) 

the impulse response can be written as 

/

oo -| /»oo 

H{uj)p{Lu)e'''^(Lj = — / ll{uj)e''''(Lj. (1.17) 
-oo 27r J_^ 

In other words, the time domain response to a Dirac delta is the inverse Fourier t rans-
form of the F R F . The F R F and the impulse response function form a couple of Fourier 
transforms. It is possible to refer both to H{u) or to h{t) to characterize the system and 
to provide a predictive model. 
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2 Display of a FRF 

As a complex quantity, the FRF contains information regarding both the amplitude and 
the phase of the oscillation. 

The real and imaginary components of H{u;) are: 

(l - r'^) Ik 

(1 - r^) + (2Cr) 

-2Cr/fc 

( l - r 2 f + ( 2 C r f 
(2.1) 

The three most common forms of representation of H(u) are reported in Figure 3-4 for 
a SDOF with C = 0.125. 

(1) Real and Imaginary parts of H{(JS) VS r (Figure 3). The real part of H{ij)) crosses 
the frequency axis at resonance, while, at the same frequency, the imaginary part reaches 
a minimum. 

2 

1 

Hkoj) 

HI {U) 

1 - r^/k 

(1 - r2)2 + (2Cr)^ 

-2Cr/k 

( l - r 2 f + (2Cr)' 

Figure 3. Real and Imaginary part of the FRF vs r. 

(2) Modulus of FRF and phase vs r (Figure 4). Resonance is pointed out by a 
maximum in the modulus of the FRF and by a phase change from 0 to -TT. 

(3) Real part vs Imaginary part in the Argand plane (Figure 4). This is a circular 
loop that contains all the information and enhances the region close to resonance, which 
is practically coincident with the intersection of the circle with the y axis. 

The dynamic properties of a system can be expressed in terms of any convenient 
response characteristics: FRF can be presented in terms of displacement (receptance), 
velocity (mobility) or acceleration (intertance). Mobility and inertance are obtained from 
receptance by multiplying by iuj and (io;)^, respectively. 

From the analytical relationships, previously reported, it is clear that the FRF can be 
experimentally evaluated mainly by two different methods (Ewins, 2000; Maia and Silva, 
1997). The former involves the steady-state response to a harmonic force P at different 
assigned frequencies, which implies the use of an exciter connected to the structure that 
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0.5 1 1.5 2 2.5 3 

0.5 1 1.5 2 2.5 3 
\H{u)\ = ^jHn{ujf + Hi{ujf 

a = arctaii(//'/ (w) /HR [UJ)) 

H,{co) 

Figure 4. Modulus of FRF and phase vs r and Argand plane. 

generates a harmonic force. The amplitude U of the stationary response is recorded and 
the values of the FRF at the discrete frequencies Uj of the applied force are directly 
obtained from the ratio: 

U H{uj) = 
P' 

(2.2) 

The other method involves free oscillations of the structure and includes devices which 
are able to exert impulsive force, such as an instrumented hammer or a sharp release of 
a static force. The FRF is obtained as the ratio between the response Fourier transform 
and the input Fourier transform: 

Hiu) (2.3) 

Through this relationship, H{UJ) can only be obtained in the frequency band contained 
in the forcing function. In particular, the input generated by a real impulsive force has a 
wide spectrum which is flat within a frequency band 0 — fmax-, then rapidly approaches 
zero. This implies that fmax is not infinite, as in the theoretical Dirac delta, but that in 
the real world depends on the impulse duration T. 

In the example of Figure 5, the duration of an experimental impulse is about 0.0006s 
and the related Fourier transform is constant only up to about 1000 Hz, then rapidly 
decreases and reaches zero at 3000 Hz, which can be approximately estimated as 2/T. 

3 Dynamic Characterization of Multidegree-of-Freedom Systems 

The multidegree-of-freedom systems are representative of discrete systems or discretized 
continuous systems. The governing equations of motion of a linear system with N-
degrees-of-freedom (NDOF) can be written in matrix form as (Craig, 1981; Meirovitch, 
1997) 

Mu{t) + Cu{t) + Ku{t)=p{t) (3.1) 

where M, C and K are respectively the mass, damping and stiffness matrices, with 
dimensions N x N and p{t) is the force vector. If the damping matrix C is proportional 
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Figure 5. Experimental impulse (left) and its Fourier transform (right). 

to a linear combination of M and K, the damped system will have real eigenvectors 
coincident with that of the undamped system (classical damping), so that the equations of 
motion can be decoupled by describing the displacement motion in terms of eigenvectors 
weighted by the modal coordinates q{t) 

u{t) = ̂ q{t) = J2^rqr{t). (3.2) 
r 

By substituting this expression in the equations of motion, then pre-multiplying by 
the matrix $ ^ and using the orthogonality eigenvector conditions, N uncoupled modal 
equations are obtained: 

Qr ( t ) + 2CrUJrqr ( t ) + krQr (t) = Pr {t) T = 1, AT. (3.3) 

Hence, the system behaviour is represented as a linear superposition of the response of 
N SDOF systems. In this case, the FRF is a matrix N x N; the displacement in the 
node i caused by a force applied in node j is: 

An NDOF systems has N natural frequencies ujr and N related mode shapes ^r 
along with the modal damping coefficients Cr- These are the dynamic characteristics 
of the structure. When the structure is excited by a harmonic force with a frequency 
coincident to one of its natural frequencies, the response is amplified. As an example. 
Figure 6 reports the modulus of if 33 (a;) and the mode shapes of a 3D0F shear-type frame. 
The FRF exhibits three sharp peaks at natural frequencies (Ji, a;2, a;3. i/13, if23,-^33 
may be obtained by the response measured at nodes 1, 2 and 3 to a forcing function 
apphed in the node 3. 

With regard to a 3D0F system. Figure 7 reports Hu and H21-, represented in two of 
the three possible forms described for a SDOF system. From these curves, the resonances 
can be obtained as for the SDOF system, as well as other data needed to define the mode 
shapes. When dealing with a NDOF system, it is mandatory to define if two points 
oscillate in phase. The difference of phase between two points in a mode can be directly 
read from the phase plot. As an example, nodes 1 and 2 oscillate in-phase in mode 1 and 
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Figure 6. FRF and mode shapes of a 3D0F shear-type frame. 

2. In fact, the phase difference between the two responses is zero. By contrast, these two 
nodes oscillate out-of-phase in mode 3, as shown by a TT phase difference. The information 
can also be deduced from the Nyquist plot: a change in the quadrant occupied by the 
circles pinpoints a n phase difference. This is indicated in Figure 7 for the third mode. 
The results are in agreement with the mode shapes of Figure 7. 

Figure 8 shows the Fourier transform of acceleration response of a simply supported 
continuous beam measured in CH2 obtained by means of a static force in CHS sharply 
removed (left) or of a hammer impulse (right) at the same point. As for the NDOF, 
each peak corresponds to a natural frequency. The impulsive force is more effective in 
exciting a large number of frequencies with respect to the imposed initial displacement. 

4 Modal Parameter Identification 

Once the registration of the response is available, there are various procedures in the time 
domain and in the frequency domain to determine the modal properties of the structure. 
Two classical procedures are presented here. The first algorithm presented is based on a 
multimodal estimate in the frequency domain, following the pioneering work by Goyder 
(1980). In the neighborhood of the r-th resonance, the inertance Hij{u) can be regarded 
as the sum of two terms: 

Hijiu;) 
-Uj'^^ir^rj 

N 

UJt + E 
-Uj'^^is^js 

S 7 t r = l ^ 

(4.1) 

The former is the prevailing resonant term and the latter is the contribution of all the 
other modes. By comparing the experimental (e) and the analytical inertance functions 
the error at the generic frequency u>k around ujr can be defined: 

Ek = Hij (wfc) - Hi;> {ujk) = («) Ck (4.2) 
a;2 - o;̂  + 2iC,r^r^k 

where the constant Ck is given by the difference between the experimental value of the 
FRF and the modal contributions of all the other modes s ^ r. By introducing the 
following modal quantities as variables of the problem: 

Qjf — U)^ , O-p — ZC^fUJ'p , C^jr — H^irH^jr (4.3) 
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Figure 7. Display of the FRF ^33 of a 3D0F system. 

and a suitable weight function 

m = 9 — - T — , (4.4) 

the error function can be linearized with respect to the assumed variables: 

Ek = —^ 2 . 'o-/"^ ^k= JiwkCijr + WkCk (ar " Cc;̂  + ibrUJk) • (4.5) 

The procedure follows an iterative scheme: at the h-th iteration, the error is expressed 
as: 

Ek,h = iJkWk,h-\Cijr,h + 'Wk,h-lCk,h-l {Or^h " f̂e + ^W^h^k) (4.6) 

which is linear with respect to the three r-th modal unknowns since Wk and Ck are 
determined by the values at the step h — 1. The objective function is obtained by 
summing the square error in a frequency range in the neighborhood of ujr • On the basis 
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Figure 8. Free response and FRF of a simply supported beam. 

of the least-squares method, the modal unknowns are determined. At each step, this 
procedure is extended to all meaningful resonances which appear in the response and, at 
the end of the process, all the modal parameters in the range of frequencies investigated 
are determined (Beolchini and Vestroni, 1994; Genovese and Vestroni, 1998; De Sortis 
et al., 2005). 

The second method presented is a frequency domain decomposition method and relies 
on the response to ambient excitation sources when the output only is available. The 
method is based on the singular value decomposition of the spectral matrix (Brincker 
et al., 2001). It exploits the relationship: 

Gyy (a;) = H (a;) Gxx (uj) H ^ (a.') (4.7) 

where Gxx{uj) (i?xi?, R number of inputs) and Gyy{u) {MxM, M number of measured 
responses) are respectively the input and output power spectral density matrices, and 
H(a;) is the frequency response function matrix (MxR). 

Supposing the inputs at the different points to be completely uncorrelated and white 
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noise, Gxx is a constant diagonal matrix G, independent of u. Thus: 

Gyy (a;) = G H {u) H ^ {u) (4.8) 

whose term jk can be written as, by omitting the constant G: 

r=l \ p = l P / \ g = l 9 / 

In the neighborhood of the i-ih resonance, the previous equation can be written as: 

(4.10) 

R 

where ^ (|)'^^ is a constant. By ignoring this term, the matrix Gyy can thus be expressed 

as the product of three matrices: 

G r o M = * A i * ^ (4.11) 

which represents a singular value decomposition of the matrix Gyy, where: 

0... 0 
A , - 0 0... 0 

0 0... 0 

(4.12) 

The peaks of the first singular values indicate the natural frequencies of the system. In 
the neighborhood of the i-th peak of the first singular value, the first singular vector 
is coincident with the i-th eigenvector. This occurs at each j-th resonance, when the 
prevailing contribution is given by the j-th mode. This procedure, which had recently a 
great diffusion, was implemented in a commercial code (ARTeMIS). 

5 Conclusions 

For SDOF and NDOF systems the knowledge of H{uj) provides a predictive model of 
the mechanical system in evaluating the response to any excitation. Moreover, it is 
possible to obtain experimental values of some components of H{uj) and then extract 
experimental values of modal parameters which are characteristic dynamic properties of 
the structure. Several methods in frequency and time domain are available to evaluate 
modal parameters from measured response to known and unknown excitation. 
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Damage Identification using Inverse Methods 

Michael I. Friswell 
Department of Aerospace Engineering, University of Bristol, Bristol BS8 ITR, UK. 

m.i.friswell@bristol.ac.uk 

Abstract This chapter gives an overview of the use of inverse methods in damage 
detection and location, using measured vibration data. Inverse problems require the 
use of a model and the identification of uncertain parameters of this model. Damage 
is often local in nature and although the effect of the loss of stiffness may require 
only a small number of parameters, the lack of knowledge of the location means that 
a large number of candidate parameters must be included. This leads to potential 
ill-conditioning problems, and this topic is reviewed in this chapter. This chapter 
then goes on to discuss a number of problems that exist with the inverse approach 
to structural health monitoring, including modelling errors, environmental effects, 
damage localisation, regularisation, models of damage and sensor validation. 

1 Introduction to Inverse Methods 

Inverse methods combine an initial model of the structure and measured data to im-
prove the model or test an hypothesis. In practice the model is based on finite element 
analysis and the measurements are acceleration and force data, often in the form of a 
modal database, although frequency response function (FRF) data may also be used. 
The estimation techniques are often based on the methods of model updating, which 
have had some success in improving models and understanding the underlying dynamics, 
especially for joints (Friswell and Mottershead, 1995; Mottershead and Friswell, 1993). 
Model updating methods may be classified as sensitivity or direct methods. Sensitivity 
type methods rely on a parametric model of the structure and the minimisation of some 
penalty function based on the error between the measured data and the predictions from 
the model. These methods offer a wide range of parameters to update that have physical 
meaning and allow a degree of control over the optimisation process. The alternative is 
direct updating methods that change complete mass and/or stiffness matrices, although 
the updated models obtained are often difficult to interpret for health monitoring appli-
cations. These methods will be considered in more detail later. However it should be 
emphasised that a huge number of papers have been written on the application of inverse 
methods to damage identification, and this chapter aims to give an overview of the ap-
proaches rather than a complete literature review. This chapter will also consider some 
of the difficulties that occur when inverse methods are used for damage identification 
(Friswell, 2007; Doebling et al., 1998). 

The four stages of damage estimation, first given by Rytter (1993), are now well 
established as detection, location, quantification and prognosis. Detection is readily 
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performed by pattern recognition methods or novelty detection (Worden, 1997; Worden 
et al., 2000). The key issue for inverse methods is location, which is equivalent to error 
locaUsation in model updating. Once the damage is located, it may be parameterised 
with a limited set of parameters and quantification, in terms of the local change in 
stiffness, is readily estimated. Prognosis requires that the underlying damage mechanism 
is determined, which may be possible using inverse methods using hypothesis testing 
among several candidate mechanisms. This questions is considered in more detail later 
in the chapter. However, once the damage mechanism is determined, the associated 
model is available for prognosis, and this is a great advantage of model based inverse 
methods. 

1.1 Objective Functions 

Friswell and Mottershead (1995) discussed sensitivity based methods in detail. The 
approach minimises the difference between modal quantities (usually natural frequencies 
and less often mode shapes) of the measured data and model predictions. This problem 
may be expressed as the minimization of J , where 

J(e) = | K - z ( ^ ) f = e^e (1.1) 

and 
e = Zm-z{e). (1.2) 

Here z ^ and z{6) are the measured and computed modal vectors, ^ is a vector of all 
unknown parameters, and e is the modal residual vector. The modal vectors may consist 
of both natural frequencies and mode shapes, although often mode shapes are only used 
to pair individual modes. If mode shapes are included then they must be carefully 
normalised, the sensor locations must be carefuly matched to the finite element degrees 
of freedom and weighting should be applied to Equation (1.1). 

Frequency response functions may also be used, although a model of damping is 
required, and the penalty function is often a very complicated function of the parameters 
with many local minima, making the optimisation very difficult, dos Santos et al. (2005) 
presents an example of such a method for damage in a composite structure. 

1.2 Sensitivity Methods 

Sensitivity based methods allow a wide choice of physically meaningful parameters 
and these advantages has led to their widespread use in model updating. The approach 
is very general and relies on minimising a penalty function, which usually consists of the 
error between the measured quantities and the corresponding predictions from the model. 
Parameters are then chosen that are assumed uncertain, and these are usually estimated 
by approximating the penalty function using a truncated Taylor series and iterating 
to obtain a converged solution. If there are sufficient measurements and a restricted 
set of parameters then the identification may be well-conditioned. Often some form of 
regularisation must be applied, and this is considered in detail later. Other optimisation 
methods may be used, such as quadratic programming, simulated annealing or genetic 
algorithms, but these are not considered further in this chapter. Problems will also arise 


