ESSENTIALS IN OPHTHALMOLOGY G.K.KRIEGLSTEIN · R.N.WEINREB Series Editors

Cataract and Refractive Surgery

Vitreo-retinal

Medical Retina

Oculoplastics and Orbit

Paediatric Neuro-

Ophthalmology, ophthalmology, Genetics

Cataract and Refractive Surgery

Edited by T. KOHNEN D.D. KOCH

Springer

Essentials in Ophthalmology

Cataract and Refractive Surgery

T.Kohnen D.D.Koch Editors

Essentials in Ophthalmology

G.K.Krieglstein R.N.Weinreb Series Editors

Glaucoma

Cataract and Refractive Surgery

Uveitis and Immunological Disorders

Vitreo-retinal Surgery

Medical Retina

Oculoplastics and Orbit

Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics

Cornea and External Eye Disease

Editors Thomas Kohnen Douglas D. Koch

Cataract and Refractive Surgery

With 75 Figures, Mostly in Colour and 22 Tables

Series Editors

Günter K. Krieglstein, MD

Professor and Chairman Department of Ophthalmology University of Cologne Kerpener Straße 62 50924 Cologne Germany

Robert N. Weinreb, MD

Professor and Director Hamilton Glaucoma Center Department of Ophthalmology University of California at San Diego 9500 Gilman Drive La Jolla, CA 92093-0946 USA

Volume Editors

Thomas Kohnen, Prof. Dr.

Augenklinik der Johann Wolfgang Goethe-Universität Theodor-Stern-Kai 7 60590 Frankfurt Germany

Douglas D. Koch, MD, Prof.

Department of Opthalmology 6565 Fannin, NC 205 Houston, TX 77030 USA

ISSN 1612-3212

ISBN-10 3-540-30795-8 Springer Berlin Heidelberg NewYork

ISBN-13 978-3-540-30795-2 Springer Berlin Heidelberg NewYork

Library of Congress Control Number: 2006929208

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science + Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Editor: Marion Philipp, Heidelberg, Germany Desk Editor: Martina Himberger, Heidelberg, Germany Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany Cover Design: Erich Kirchner, Heidelberg, Germany

Printed on acid-free paper 24/3100Wa 543210

Foreword

The series *Essentials in Ophthalmology* was initiated two years ago to expedite the timely transfer of new information in vision science and evidence-based medicine into clinical practice. We thought that this prospicient idea would be moved and guided by a resolute commitment to excellence. It is reasonable to now update our readers with what has been achieved.

The immediate goal was to transfer information through a high quality quarterly publication in which ophthalmology would be represented by eight subspecialties. In this regard, each issue has had a subspecialty theme and has been overseen by two internationally recognized volume editors, who in turn have invited a bevy of experts to discuss clinically relevant and appropriate topics. Summaries of clinically relevant information have been provided throughout each chapter.

Each subspecialty area now has been covered once, and the response to the first eight volumes in the series has been enthusiastically positive. With the start of the second cycle of subspecialty coverage, the dissemination of practical information will be continued as we learn more about the emerging advances in various ophthalmic subspecialties that can be applied to obtain the best possible care of our patients. Moreover, we will continue to highlight clinically relevant information and maintain our commitment to excellence.

G.K.Krieglstein R.N.Weinreb Series Editors

Preface

In a field that changes as rapidly as ophthalmology, why do clinicians continue to buy books? There are probably several reasons, but a primary one is that a well-written book provides comprehensive, evidence-based, clinically relevant overviews that cannot be obtained elsewhere. The challenge is to provide this material to readers in a timely fashion, in a format that facilitates easy reference and clinical use, and in sufficient detail that basic science and theoretical aspects are provided. We hope that this volume accomplishes these goals.

This second edition of *Cataract and Refractive Surgery* includes topics that complement those in the first edition and represent new areas of clinical importance in cataract and refractive surgery. The cataract section emphasizes the management of complex cases, intraocular lens selection and power calculations. In the refractive surgery section, topics include both corneal and lenticular approaches, particularly new technologies in both realms.

We hope that the readers will find this edition to be of intellectual interest and substantial clinical value. We owe a great deal of gratitude to the authors who have worked so hard to mine their own and others' experiences and data to write these chapters.

T. Kohnen D. D. Koch Volume Editors

Contents

Cataract Surgery

Chapter 1 Intraocular Lenses to Restore and Preserve Vision Following Cataract Surgery

Robert J. Cionni

1.1	Introduction	3
1.2	Why Filter Blue Light?	3
1.3	Why is the Consideration of	
	Blue Light Important to Our	
	Cataract and Refractive Lens	
	Exchange Patients?	5
1.4	Quality of Vision with Blue-	
	Light Filtering IOLs	6
1.5	Clinical Experience	8
1.6	Unresolved Issues and Future	
	Considerations	9
1.7	Conclusion	9
	References	9

Chapter 2 Cataract Surgery in Eyes with Loose Zonules

Ehud I. Assia

2.1	Introduction
2.2	Surgical Approach 14
2.3	Weakened Zonules 14
2.4	Zonular Dialysis 15
2.5	Capsule Tension Rings 15
2.6	Other Types of CTRs 18
2.7	Dislocation of Capsular PC-
	IOL 20
	References 22

Chapter 3 Management of the Small Pupil for Cataract Surgery

Alan S. Crandall

3.1 3.2	Introduction
	Small Pupil 23
3.2.1	Two-Instrument Iris Stretch . 24
3.2.2	Iris Stretch: Beehler Device 24
3.2.3	Iris Stretch/Iris Retractors 25
3.2.4	Silicone Pupil Expander 26
3.2.5	PMMA Pupil Expanders 26
3.2.6	Multiple Sphincterotomies 26
3.2.7	Special Circumstances:
	Systemic Alpha 1 Blockers 27
	References 29

Chapter 4 Advanced Intraocular Lens Power Calculations

John P. Fang, Warren Hill, Li Wang, Victor Chang, Douglas D. Koch

4.1	Introduction	31
4.2	Axial Length Measurement	31
4.2.1	Ultrasound	31
4.2.1.1	Applanation Technique	32
4.2.1.2	Immersion Technique	33
4.2.2	Optical Coherence Biometry	35
4.3	Keratometry	36
4.4	Anterior Chamber Depth	
	Measurement	37
4.5	IOL Calculation Formulas	37
4.5.1	The Second and Third	
	Generation of IOL Formulas .	38
4.5.2	The Fourth Generation of IOL	
	Formulas	38
4.5.3	Capsular Bag to Ciliary Sulcus	
	IOL Power Conversion	39
4.6	Determining IOL Power	
	Following Corneal Refractive	
	Surgery	39

X Contents

4.6.1	Methods Requiring Historical	
	Data	40
4.6.1.1	Clinical History Method	40
4.6.1.2	Feiz-Mannis IOL Power	
	Adjustment Method	40
4.6.1.3	Masket IOL Power Adjustment	
	Method	40
4.6.1.4	Topographic Corneal Power	
	Adjustment Method	40
4.6.2	Methods Requiring No	
	Historical Data	41
4.6.2.1	Hard Contact Lens Method	41
4.6.2.2	Modified Maloney Method	41
4.6.3	Hyperopic Corneal Refractive	
	Surgery	41
4.6.4	Radial Keratotomy	42
4.6.5	Accuracy and Patient	
	Expectations	42
4.7	Corneal Transplantation	44
4.8	Silicone Oil	44
4.9	Conclusion	45
	References	45

Refractive Surgery

Chapter 5 Customized Corneal Treatments for Refractive Errors

Scott M. MacRae, Manoj V. Subbaram

5.1	Introduction 49
5.2	Some Basics of Customized
	Laser Refractive Surgery 49
5.3	Forms of Customization 52
5.3.1	Optical Customization 52
5.3.2	Anatomical Customization 52
5.3.3	Functional Customization 53
5.4	Technological Requirements
	for Customized Refractive
	Surgery 54
5.4.1	Physical Properties of the
	Laser 54
5.4.2	Eye Movement Tracking 54
5.4.3	Wavefront Measurement and
	Wavefront–Laser Interface 55
5.5	Biomechanics of Refractive
	Surgery 56

5.5.1	LASIK Flap	57
5.6	Clinical Results of Customized	
	Excimer Laser Ablation	58
5.7	Summary	60
	References	61

Chapter 6 EpiLASIK

Chris P. Lohmann, Christoph Winkler von Mohrenfels, Andrea Huber

6.1	Introduction
6.2	EpiLASIK Microkeratomes 66
6.3	Histology of the EpiLASIK
	Cut 67
6.3.1	Light Microscopy 67
6.3.2	Transmission Electron
	Microscopy 67
6.3.3	Scanning Laser Microscopy . 68
6.3.4	Cell Vitality 68
6.4	EpiLASIK: the Surgery 68
6.4.1	Preoperative Evaluation 68
6.4.2	Indication for Refraction 69
6.4.3	Inclusion Criteria 69
6.4.4	Exclusion Criteria 69
6.5	EpiLASIK Technique 69
6.5.1	Surgical Technique: Pearls 70
6.5.2	EpiLASIK Microkeratome
	Settings Exemplary for the
	Gebauer/CooperVision
	EpiVision 70
6.5.3	High Myopia: Mitomycin C 70
6.5.4	Bandage Contact Lens 70
6.5.5	Postoperative Examinations
	and Medication
6.6	Clinical Experiences 72
6.6.1	Conventional EpiLASIK 72
6.6.2	Refractive Results 73
6.6.3	Safety 74
6.6.4	Uncorrected Visual Acuity
	(UCVA Efficacy) 75
6.6.5	Postoperative Pain 75
6.6.6	Corneal Haze 75
6.6.7	Corneal Sensitivity
6.7	Customized Ablation:
	Wavefront-Guided or
	Wavefront-Optimized 76
6.7.1	Refractive Results

6.7.2	Visual Outcome 76
6.7.3	Wavefront Analysis 77
6.7.4	Corneal Haze 77
6.8	EpiLASIK Enhancement 77
6.8.1	Refractive Results (Re-
	surgery) 78
6.8.2	Visual Outcome 78
6.8.3	Corneal Haze 78
6.9	Complications 79
6.9.1	Possible Intra-
	and Postoperative
	Complications 79
6.9.1.1	Inability to Get Suction Even
	When Unit Shows Vacuum
	Attained 79
6.9.1.2	"Incomplete Flap" 79
6.9.1.3	Conjunctiva "Too Allergic"
	(Chemosis) 79
6.9.1.4	"Can't Fit the Vacuum Ring" . 79
6.10	Pros of EpiLASIK 79
6.11	Cons of EpiLASIK 80
6.12	Important 80
	References 80

Chapter 7 The Femtosecond Laser: a New Tool for Refractive and Corneal Surgery

Mitchell P. Weikert, Anne Bottros

7.1	Introduction	83
7.2	Mechanism of Action	83
7.3	Clinical Applications of the FS	
	laser	84
7.3.1	LASIK Using the Femtosecond	
	Laser	84
7.3.1.1	Laser Settings	85
7.3.1.2	Surgical Technique	86
7.3.1.3	Clinical Results	88
7.3.1.4	Flap Dimensions	88
7.3.1.5	Visual and Refractive	
	Outcomes	90
7.3.1.6	Aberrations	90
7.3.1.7	Complications	92
7.3.2	Intracorneal Ring Segment	
	Implantation	96
7.3.3	Penetrating and Lamellar	
	Keratoplasty	97
7.4	Conclusions	99
	References	99

Chapter 8

Complications of Excimer Laser Surgery

Hiroko Bissen-Miyajima

8.1	Introduction 101
8.2	Preoperative Evaluation 101
8.3	Intraoperative
	Complications 101
8.3.1	Decentered Ablations 103
8.3.2	Irregular Astigmatism 103
8.3.3	Central Islands 103
8.3.4	Undercorrection 106
8.3.5	Overcorrection 107
8.4	Postoperative
	Complications 107
8.4.1	Regression 108
8.4.2	Corneal Haze 108
8.4.3	Delayed Epithelialization 109
8.4.4	Infections 109
8.4.5	Adverse Effects on the
	Corneal Endothelium 109
8.4.6	Corneal Ectasia 109
	References 110

Chapter 9 Refractive Lens Exchange: Risk Management

Emanuel Rosen

9.1	Introduction 113
9.2	RLE: Need to Know 113
9.3	Cystoid Macular Edema 114
9.4	Risk Management and
	Rhegmatogenous Retinal
	Detachment 114
9.5	Complicated Lens Surgery . 116
9.6	Age and Pseudophakia in
	Myopic Eyes 117
9.7	Odds of RRD Occurrence 117
9.8	Why Should Myopic Eyes Be
	Vulnerable to RRD? 118
9.9	Prophylaxis 119
9.10	Nd:YAG Laser Posterior
	Capsulotomy and Retinal
	Detachment 120
9.11	Relationship of RRD
	Occurrence to Surgical
	Complications of Lens
	Extraction 120

9.12	Risk of RRD After RLE in	
	Hyperopic Eyes	120
9.13	Prognosis of RRD	
	Following RLE: Outcome	
	of Pseudophakic Retinal	
	Detachment	121
9.14	Ethical and Medico-Legal	
	Considerations	122
9.15	Conclusion	123
	References	124

Chapter 10 Pseudoaccommodative and Accommodative IOLs

Mark Packer, I. Howard Fine, Richard S. Hoffman, H. Burkhard Dick

10.1	Introduction	127
10.2	Clinical Efficacy and Safety .	129
10.3	Photic Phenomena	129
10.4	Refractive Lens Exchange	131
10.5	Complication Management	131
10.6	Functional Vision and	
	Multifocal IOL Technology	131
10.7	Accommodative Intraocular	
	Lenses	133
10.8	Accommodative IOLs in	
	Clinical Practice	135
10.9	Dual Optic Accommodative	
	IOL Technology	137
10.10	Conclusions	139
	References	140

Chapter 11

Selecting Phakic Intraocular Lenses for the Correction of Refractive Errors

Thomas Kohnen, Thomas Kasper

11.1	Introduction	143
11.2	From Past to Present:	
	Evolution of Phakic IOLs	144
11.2.1	History of Anterior Chamber	
	Phakic IOLs	144
11.2.2	Current Models of Anterior	
	Chamber pIOLs	144
11.2.2.1	Rigid pIOLs with fixation in	
	the anterior chamber angle	144
11.2.2.2	Foldable pIOLs with fixation	
	in the anterior chamber	
	angle	145

11.2.2.3	Rigid Iris-Fixated pIOLs	146
11.2.2.4	Foldable Iris-Fixated pIOL	147
11.2.3	History of Posterior Chamber	
	Phakic IOLs	147
11.2.4	Current Models of Posterior	
	Chamber plOLs	147
11.2.4.1	Implantable Contact Lens	
	(ICL, Staar)	147
11.2.4.2	Phakic Refractive Lens (PRL,	
	IOL Tech)	147
11.3	General Factors for the	
	Selection of a pIOL	148
11.3.1	Preoperative Refraction	148
11.3.2	Preexisting Astigmatism	149
11.3.3	Anatomical Requirements	150
11.3.3.1	Endothelial Cell Density	150
11.3.3.2	Anterior Chamber Depth	150
11.3.3.3	Anterior Chamber Angle	150
11.3.3.4	Anterior and Posterior	
	Chamber Biometry	151
11.3.3.5	Pupil Diameter	152
11.3.3.6	Opacification and "Crystalline	
	Lens Rise"	153
11.3.3.7	Status of the Retina	153
11.4	Excluding Pathologies	153
11.5	Conclusion	154
	References	154

Chapter 12 Intracorneal Implants

Jorge L. Alió y Sanz, Mohamed H. Shabayek

12.1	Introduction	159
12.2	Intracorneal Hydrogel	
	Lenses	159
12.2.1	Introduction	159
12.2.2	Indications	160
12.2.3	Characteristics	160
12.2.4	Surgical Technique	160
12.2.5	Postoperative Treatment	160
12.2.6	Outcome	160
12.2.7	Complications	161
12.3	Intracorneal Ring	
	Segments	161
12.3.1	Introduction	161
12.3.2	Mode of Action	162
12.3.3	Types	162
12.3.4	Surgery Plan	164
12.3.4.1	INTACS	164
12.3.4.2	KERARING	164

- 12.3.5 Implantation Technique 165
- 12.3.5.1 Surgically 165
- 12.3.5.3 Postoperative Treatment .. 167
- 12.3.6Outcomes of Intracorneal
Ring Segments16712.3.7Complications168
ReferencesSubject Index171

Contributors

Jorge L. Alió y Sanz, MD, Prof.

Medical Director VISSUM, Instituto Oftalmologico de Alicante Avda. de Denia, s/n 03016 Alicante Spain

Ehud I. Assia, MD, Prof.

Department of Ophthalmology Meir Medical Center Tsharnihovski Street Kfar-Saba 44281 Israel

Hiroko Bissen-Miyajima, MD, Prof.

Department of Ophthalmology Tokyo Dental College Suidobashi Hospital 2-9-18 Misaki-cho, Chiyoda-ku Tokyo 101-0061 Japan

Anne Bottros, MD

Department of Ophthalmology Boston Medical Center 85 East Concord Street Boston, MA 02118 USA

Victor Chang, MD

Department of Ophthalmology Baylor College of Medicine 6565 Fannin, NC 205 Houston, TX 77030 USA

Robert J. Cionni, MD

Cincinnati Eye Institute 10494 Montgomery Road Cincinnati, OH 45242-5214 USA

Alan S. Crandall, MD

Department of Ophthalmology University of Utah 75 North Medical Drive Salt Lake City, UT 84132-0001 USA

H. Burkhard Dick, Prof. Dr.

Direktor der Universitäts-Augenklinik In der Schornau 23-25 44892 Bochum

John P. Fang, MD

Department of Ophthalmology Baylor College of Medicine 6565 Fannin, NC 205 Houston, TX 77030 USA

I. Howard Fine, MD

1550 Oak Street, Suite 5 Eugene, OR 97401-7700 USA

Warren E. Hill, MD

East Valley Ophthalmology Mesa, AZ 85206-1438 USA

Richard S. Hoffman, MD

1550 Oak Street, Suite 5 Eugene, OR 97401-7700 USA

Andrea Huber, Dr.

Augenklinik Klinikum Rechts der Isar Technische Universität Ismaninger Strasse 22 81675 München Germany

Thomas Kasper, Dr.

Augenklinik der Johann Wolfgang Goethe-Universität Theodor-Stern-Kai 7 60590 Frankfurt Germany

Douglas D. Koch, MD, Prof.

Department of Ophthalmology Baylor College of Medicine 6565 Fannin, NC205 Houston, TX 77030 USA

Thomas Kohnen, Prof. Dr.

Augenklinik der Johann Wolfgang Goethe-Universität Theodor-Stern-Kai 7 60590 Frankfurt Germany

Chris P. Lohmann, Prof. Dr. Dr.

Augenklinik Klinikum Rechts der Isar Technische Universität Ismaninger Strasse 22 81675 München Germany

Scott M. MacRae, MD, Prof.

University of Rochester StrongVision 100 Meridian Center 125 Rochester, NY USA

Mark Packer, MD

1550 Oak Street, Suite 5 Eugene, OR 97401-7700 USA

Emanuel Rosen, MD

Rosen Eye Associates Harbour City Salford, Manchester M3 4DY UK

Mohamed Helmy Shabayek, MD

Instituto Oftalmológico de Alicante Avda. Denia, s/n, (Edificio VISSUM) 03016 Alicante Spain

Manoj Subbaram, PhD

Department of Ophthalmology and Center for Visual Science University of Rochester 100 Meridian Center Blvd, Suite 125 Rochester, NY 14618 USA

Li Wang, MD, PhD

Department of Ophthalmology Baylor College of Medicine 6565 Fannin, NC 205 Houston, TX 77030 USA

Mitchell P. Weikert, MD, Prof.

Department of Ophthalmology Baylor College of Medicine 6565 Fannin, NC205 Houston, Texas 77030 USA

Christoph Winkler von Mohrenfels, Dr.

Augenklinik Klinikum Rechts der Isar Technische Universität Ismaninger Strasse 22 81675 München Germany

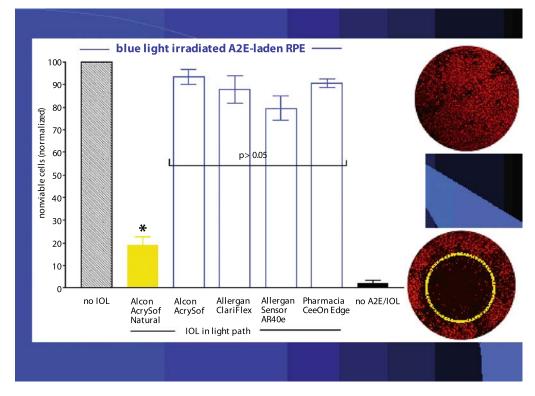
Cataract Surgery

Chapter 1

Intraocular Lenses to Restore and Preserve Vision Following Cataract Surgery

Robert J. Cionni

Core Messages


- Our ability to restore vision lost to cataracts has improved tremendously over the last few decades.
- More focus on maintaining vision is essential, especially for patients with macular degeneration.
- Blue light has been shown to be potentially damaging to the retina.
- The normal human crystalline lens filters out much blue wavelength light. Removal of this lens and placing a colorless UV-blocking intraocular lens (IOL) leaves the retina exposed to higher levels of blue light.
- IOLs are now available that can filter out blue light similar to the normal human lens.
- These blue filtering IOLs have been shown to have no negative effect on vision in terms of visual acuity, contrast sensitivity, color perception, and night vision.

1.1 Introduction

Although cataract surgery has been performed for many centuries, technological advances now provide us with the opportunity to afford our patients vision more similar to the pre-cataract state than ever before. Advanced instrumentation and surgical techniques allow our patients to expect excellent uncorrected vision within 24 h of surgery. In addition, newer multifocal and accommodating intraocular lens (IOLs) offer the possibility of distance, near, and intermediate vision without glasses [2, 23, 32]. With these IOLs we can not only restore vision to the precataract level, but also to the pre-presbyopia state, thereby reducing spectacle dependency. Unfortunately, many of our cataract patients suffer from age-related macular degeneration (ARMD) as well and are concerned about progressive vision loss following cataract surgery. Despite our success in restoring vision for our cataract patients, we have not gained much ground in preserving vision for those patients with macular degenerative disease. Over the last few decades more and more literature has surfaced suggesting that blue light may be one factor in the progression of ARMD [8]. The normal human crystalline lens filters not only ultraviolet light, but also much of the high frequency blue wavelength light. When we remove the crystalline lens, we remove the eye's natural blue light filter. If we replace the crystalline lens with an IOL that does not filter this blue wavelength light, we must wonder if we are increasing the risk of worsening ARMD. In recent years, blue-light filtering IOLs have been released by two IOL manufacturers. In this chapter we will look at the rationale for implanting blue-light filtering IOLs in an effort to not only restore our patients' vision, but also to preserve that vision.

1.2 Why Filter Blue Light?

It is well known that pseudophakic eyes are more susceptible to retinal damage from near ultraviolet light sources [11, 15]. Pollack et al. followed 47 patients with bilateral early ARMD after they underwent extracapsular cataract extraction and

Fig. 1.1 Cultured human retinal pigment epithelial (RPE) cells laden with A2E exposed to blue wavelength light. Cell death is significant when UV blocking color-

less intraocular lenses (IOLs) are placed in the path of the light, yet markedly reduce when the AcrySof Natural IOL is placed in the light path

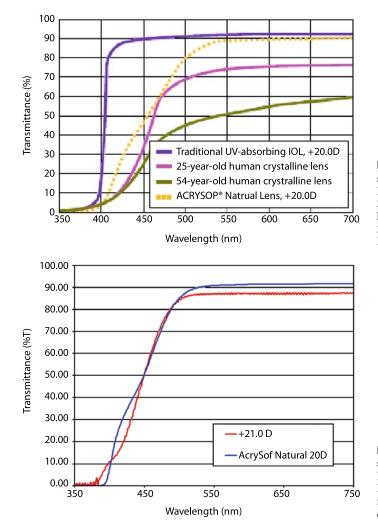
implantation of a UV-blocking IOL in one eye, with the fellow eye as a phakic control [25]. Neovascular ARMD developed in 9 of the pseudophakic eyes versus 2 of the control eyes, which the authors suggested might be due to the loss of the "yellow barrier" provided by the natural crystalline lens.

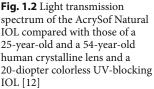
Data from the Age-Related Eye Disease Study (AREDS), however, suggest a heightened risk of central geographic retinal atrophy in pseudophakic eyes [1]. The retina appears to be susceptible to chronic repetitive exposure to low-radiance light as well as brief exposure to higher-radiance light [17, 18, 31, 34]. Chronic, low-level exposure (Class 1) injury occurs at the level of the photoreceptors and is caused by the absorption of photons by certain visual pigments with subsequent destabilization of photoreceptor cell membranes. Sparrow and coworkers have demonstrated that a component of lipofuscin, known as A2E, is integral in blue light-induced retinal pigment epithelium (RPE) damage [3, 14, 29] and although the retina has inherent mechanisms from Class 1 photochemical damage, the aging retina is less able to provide sufficient protection [27, 37].

Several epidemiological studies have concluded that cataract surgery or increased exposure of blue wavelength light may be associated with progression of macular degeneration [5, 35]. However, other epidemiologic studies have failed to come to this conclusion [6, 7, 19]. Such conflicting epidemiological results are not unexpected since age-related macular disease is felt to be a multifactorial biologic process. Therefore, many of the studies concerning the effects of blue light on the retina have been conducted in animals and in vitro [13, 16, 17, 21, 24, 26]. Numerous of these laboratory studies demonstrate a susceptibility of the RPE to damage when exposed to blue light [28, 29].

1

If blue light can potentially induce retinal injury, what is felt to be the etiology of the damage? It is well known that lipofuscin accumulates in the RPE cells as we age. One component of lipofuscin is a compound known as A2E and it is this compound that is believed to be the culprit in RPE cell death. A2E has an excitation maximum in the blue wavelength region (441 nm) and when excited by blue light, A2E generates oxygen free radicals, which can lead to RPE cell damage and death. At Columbia University, Sparrow and colleagues exposed cultured human RPE cells laden with A2E to blue light and observed extensive cell death. They then placed different UV blocking IOLs or a UV blocking and blue light filtering IOL in the path of the blue light to see if any of the IOLs provided a protective effect. The results of this study demonstrated that cell death was extensive with all UV blocking colorless IOLs, but significantly diminished with the UV and blue light filtering IOL (Fig. 1.1) [30]. These experiments were conducted in vitro and therefore cannot take into account any natural protective mechanisms that might be present in vivo. Additionally, the light exposure employed was more representative of high-level short-term exposure rather than low-level chronic exposure. Still, this work demonstrates clearly that blue light-filtering IOLs can help A2E-laden RPE cells to survive the phototoxic insult of the blue light.


Summary for the Clinician


• A growing body of literature suggests that blue light exposure may be one factor in the progression of macular degeneration.

1.3 Why is the Consideration of Blue Light Important to Our Cataract and Refractive Lens Exchange Patients?

The human crystalline lens normally filters ultraviolet light and much of the light in the blue wavelength spectrum [12]. When the lens is removed during cataract or refractive lens exchange (RLE) surgery, this blue-wavelength light can now reach the retina, thereby exposing the RPE cells to much higher levels of blue light than they have ever known. If a *colorless* UV blocking IOL is implanted, the RPE cells remain exposed to this increased level of potentially damaging blue light ever after. At the time of writing, two manufacturers have developed IOLs that filter blue light in addition to UV light.

The AcrySof Natural (Alconlabs, Fort Worth, TX, USA) is a hydrophobic acrylic foldable IOL that incorporates a yellow chromophore crosslinked to the acrylic molecules. This yellow chromophore allows the IOL to filter not only UV light, but also specific levels of light in the blue wavelength region. Aging studies have shown that the chromophore will not leach out or discolor (unpublished, Alconlabs). The AcrySof Natural IOL was approved for use in Europe in 2002 and in the USA in 2003. Evaluation of its light transmission curve demonstrates that this IOL approximates the transmission spectrum of the normal human crystalline lens in the blue light spectrum (Fig. 1.2). Therefore, in addition to benefiting from less retina blue light exposure, color perception should seem more natural to these patients as opposed to the increased blue hues seen by patients who have received colorless UV blocking IOLs [39]. Hoya brought bluelight filtering IOLs to Japan in 1991 (three-piece PMMA Model HOYA UVCY) and in1994 (single-piece PMMA Model HOYA UVCY-1P). The blue-light filtering characteristics of the Hoya and the AcrySof Natural differ slightly (Fig. 1.3). Clinical studies of some of these blue light-filtering IOLs have been carried out in Japan. One study found that pseudophakic color vision with a yellow-tinted IOL approximated the vision of 20-year-old control subjects in the blue light range [9]. Another study found some improvement in photopic and mesopic contrast sensitivity, as well as a decrease in the effects of central glare on contrast sensitivity, in pseudophakic eyes with a tinted IOL versus a standard lens with UV blocker only [22].

Fig. 1.3 UV/visible transmission spectra for AcrySof Natural and Hoya AF-1 blue light-filtering IOLs obtained using the same instrument under identical conditions (unpublished, Alconlabs)

Summary for the Clinician

Removing the cataractous or noncataractous human lens removes the eye's natural blue light filter and exposes the retina to higher levels of blue light than ever before. IOLs are now available that can filter out much of that blue wavelength light similar to the normal noncataractous human lens.

1.4 Quality of Vision with Blue-Light Filtering IOLs

A multi-centered, randomized prospective FDA evaluation of the AcrySof Natural IOL was carried out before the lens gained approval for use in the USA. Three hundred patients were randomized to bilateral implantation of the AcrySof Natural IOL or the clear AcrySof Single-Piece IOL. All patients were screened to ascertain normal preoperative color vision before being deemed eligible for the study. Postoperative parameters measured included visual acuity, photopic and mesopic contrast sensitivity, and color percep-