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1

Introduction

“If necessity is the mother of invention, then deregulation is the father, and rev-
enue management (also known as yield management) is the couple’s golden child
– at least as far as operations research is concerned.” (Horner, 2000, p. 47)

Deregulation had a significant impact on the U.S. airline industry in the late
1970s. Charter and low-cost airlines such as People Express and Southwest
were able to offer seats at a fraction of the price charged by established carriers
like Pan Am and American Airlines. Due to their different cost structure, it
seemed to be impossible for the big carriers to offer tickets at the same low
price. Yet they had to find a way to compete.

Robert L. Crandall from American Airlines is widely credited with the so-
lution to the problem: yield management – today called revenue management,
since it maximizes revenue earned on a flight rather than yield (revenue per
passenger mile).

The idea was simple: American Airlines flights were only half full on av-
erage. Offering the empty seats at a discount price would not only enable the
carriers to compete with the low-cost airlines but even create additional rev-
enue, if (1) it were possible to prevent cannibalization, i.e. the sale of discount
tickets to consumers who would otherwise be willing to pay full fare, and if
(2) it could be assured that only the seats that would otherwise fly empty
were sold at the low price.

Implementing this strategy, American Airlines matched the low-cost air-
lines’ prices with a limited number of seats that had to be booked several weeks
or months in advance. Due to this purchase restriction – the lack of flexibility
– the offer was not attractive for the late-arriving demand (typically business
travelers) willing to pay the full fare.

Note, however, that if too many seats were sold at low prices, the airline
would run the risk of filling the plane too early and losing full-fare customers
(risk of revenue dilution). On the other hand, they were taking the chance
that discount demand would be rejected, with full-fare demand not sufficing
to fill the airplane. The plane would then depart with more empty seats than
necessary (demand spoilage).

The ability of American Airlines to control the availability of discount
seats had a dramatic effect on its low-cost competitors. People Express was hit
especially hard. For details on the “battle” of American Airlines versus People
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Express, see Cross (1998, Chap. 4). Revenue management contributed not only
to the bankruptcy of People Express but to the demise of several other carriers
as well. At the same time, it generated significant additional revenue for the
airlines that applied it. According to Smith et al. (1992), American Airlines
estimates that over a three-year period at the end of the 1980s, quantifiable
benefits of over 1.4 billion dollars were attributable to the control of discount
price capacity and overbooking (i.e. selling more reservations than there are
seats on the plane). Today, revenue management is both prevalent and mature
in the airline industry. In fact, Talluri and van Ryzin (2004b, p. 10) state that
the additional revenue generated by revenue management practices accounts
for 4 to 5 percent of overall revenue, a value roughly comparable to many
airlines’ profits in a good year.

One major factor that enabled American Airlines to effectively apply rev-
enue management practices was the use of information technology, namely
central reservation systems, to manage the sale of seats. In addition to record-
ing the number of seats sold and the number left to sell, central reservation
systems also enabled better price and inventory management.

Capacity control mechanisms allow airlines to open and close the offer
of discount fares depending on the number of seats still available, the time
remaining until departure, and demand forecasts. Usually, these mechanisms
are deeply embedded in the software logic and are expensive and difficult to
change (Talluri and van Ryzin, 2004b, p. 28). According to Zhang and Cooper
(2005) nested protection levels dominate airline practice due to the fact that
many distribution channels allow only these types of controls.

A protection level y specifies the number of seats to reserve (protect) for
a particular class or set of classes. If the plane’s capacity was 100 and the
protection level for full-fare demand was 70, a maximum of 30 seats could be
sold at a discount price. Beyond this limit, the discount fare class is closed.
In this example, “nested” means that full-fare demand has access to all the
capacity reserved for lower fare demand. So if e.g. only 10 seats were sold at the
discount fare but there is a high demand for seats at the full price, the airline
could sell up to 90 seats at the full fare even if some of them had originally
been assigned to the discount fare class. In the case of partitioned (non-nested)
classes, only 70 seats would be offered at the full fare. As nested protection
levels are so common in practice, one could argue that the formulation of a
capacity control problem should require the selection of a control by protection
levels (Zhang and Cooper, 2005). Yet the question remains whether (and if,
when) this is restrictive.

These central reservation systems constitute one of the earliest examples
of e-commerce. Based on the airline industry’s success story, it is expected
that the use of revenue management will be enhanced by the emerging role of
Internet-based e-commerce, see Copeland and McKenney (1988), Smith et al.
(2001), Baker et al. (2001), Boyd and Bilegan (2003), and Klein and Loebbecke
(2003). But also apart from Internet-based e-commerce, today’s information
technology is enabling more and more industries to adopt revenue manage-
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ment practices. The hotel and hospitality sector, cruise lines, event promotion
firms, and car rental companies are all examples of traditional applications
that could be modeled in a similar way to the airline industry. Today, however,
entities as diverse as the broadcasting, hospital, casino, and utility industries
are starting to use revenue management practices. For surveys on the vari-
ety of applications, see McGill and van Ryzin (1999), Talluri and van Ryzin
(2004b, Chap. 10), Yeoman and McMahon-Beattie (2004), Kimms and Klein
(2005), and Sfodera (2006).

In the recent literature, the term “revenue management” encompasses
more general demand management decisions, covering not only the deter-
mination of the number of tickets to offer at low prices (which is then called
capacity control, seat inventory control, or discount allocation) but also over-
booking. In addition to these quantity decisions, some authors even extend the
meaning of revenue management to include the problem of product creation
to ensure that full-fare demand is not sacrificed by offering tickets at discount
prices (market segmentation) as well as the problem of finding the right prices
and adjusting them over time (dynamic pricing).

For a survey of the different subtopics, see Kimes (1989), Weatherford and
Bodily (1992), Harris and Peacock (1995), Weatherford (1998), McGill and
van Ryzin (1999), Boyd and Bilegan (2003), Talluri and van Ryzin (2004b) and
Phillips (2005). Different approaches to quantity decisions are summarized in
Zehle (1991), Daudel and Vialle (1992), Klein (2001), and Tscheulin and Lin-
denmeier (2003). Dynamic pricing surveys can be found in Chan et al. (2004),
Elmaghraby and Keskinocak (2003), and Bitran and Caldentey (2003); for le-
gal aspects, see Weiss and Mehrotra (2001). Hybrid approaches that deal with
both capacity allocation and optimal pricing of the fare classes can be found
in Weatherford (1997) and Feng and Xiao (2006b). Badinelli (2000), Walczak
(2001), Chatwin (2002), Chatwin (2003), and Maglaras and Meissner (2006)
discuss the differences and similarities between capacity control and dynamic
pricing. Note that dynamic pricing problems in revenue management do not
consider replenishment; surveys on dynamic pricing and inventory decisions
are provided by Elmaghraby and Keskinocak (2003) and Chan et al. (2004).
Issues of price discrimination in the context of revenue management are dis-
cussed e.g. in Faßnacht and Homburg (1998); Talluri and van Ryzin (2004b,
Chap. 8) furnish an overview.

To prevent misunderstanding, we will call the above-mentioned practice of
determining the number of seats to protect for full-fare demand the “capacity
control problem in revenue management”, or “capacity control” for short.
Overviews that exclusively deal with mathematical models for capacity control
can be found in Ben-Yosef (2005, Chap. 7), Pak and Piersma (2002), and
Kimms and Müller-Bungart (2004).

A variety of problems is summarized under the term revenue management,
and its techniques are applied in many different industries. This work aims
neither at an industry-specific nor at an all-embracing approach to revenue
management. Instead, the goal is to provide a deeper understanding of the
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generic single-resource capacity control problem that forms the basis of many
revenue management systems. The general terminology of capacity control
will be introduced, but for simplicity, we will stick to the terminology of the
airline industry thereafter.

1.1 The Basic Capacity Control Problem

The basic capacity control model is concerned with making efficient use of
a certain, fixed capacity C of a single resource with homogeneous units that
becomes worthless after a given time T .

The company sells its capacity as imax distinct products. Each product
i = 1, . . . , imax consists of one unit of this resource and is offered at a price
(or fare) of �i. Without loss of generality, we assume that the products are
indexed such that 0 < �imax ≤ · · · ≤ �i ≤ �1.

In the airline industry, the capacity could be the number of seats in the
economy compartment of a single-leg flight, i.e. a non-stop flight from one
origin to one destination departing at some future point in time. All products,
also called booking or fare classes, represent one (reservation for a) seat on
that flight. They might only differ in price and/or in purchase restrictions such
as a Saturday night restriction or early booking conditions. These artificial
differences, known as “fencing conditions”, ensure that the same resource can
be sold at different prices. In the above-mentioned simplified case of American
Airlines, there were imax = 2 products or booking classes: tickets at a discount
fare that were available only several weeks before departure and the full-fare
tickets. We assume the fencing conditions as well as the product prices to be
fixed and exogenously given.

The question of capacity control is which products to offer for sale at a
given point in time. Frequently, it is advantageous (and feasible) to reword
this question and decide whether one should accept or reject an incoming
request for product i given a certain amount of remaining capacity and time
until departure.

1.1.1 Assumptions

We speak of a basic capacity control problem, if the following assumptions
are made:

i) After a certain time T , the whole amount of capacity C is worthless. No
additional units of capacity can be ordered.

ii) It is assumed that the major part of the costs is already sunk and that
variable costs are negligible, so that the aim of profit maximization can be
approximated by maximizing the revenue gained from the selling process.

iii) The resource has to be allocated dynamically as demand materializes.
Rejected demand is lost and cannot be stored for the future. Once ac-
cepted, a customer cannot be rejected later without significant cost.



1.1 The Basic Capacity Control Problem 5

iv) There is considerable uncertainty about the quantity and the type of
future demand. Future demand for the products offered can be described
in terms of a random variable with a known probability distribution.

v) Products consist of a single (homogeneous) resource. Products that are
composed of multiple resources, called network problems, are not con-
sidered.

vi) The company has monopolistic market power and customers are myopic.
vii) Demand (i.e. the number of requests) and time are discrete.
viii) Group bookings that have to be completely accepted or rejected are not

considered. If there is demand for more than one ticket at a time, this
demand may be partially accepted.

ix) Customers do not cancel (strictly) prior to the time of service. No-shows,
i.e. customers that do not show up at the time of service, are not con-
sidered.

x) Demand for the products is independent of the availability of other prod-
ucts.

xi) The decision-maker’s preferences can be approximated by a maximiza-
tion of expected revenue; he is assumed to be risk-neutral.

This basic single-resource capacity control model does not reflect the state
of the art in the revenue management literature, but it forms the basis for a
lot of more advanced models and for most models used in practice.

Assumptions i), ii), and iii) form the heart of the capacity control problem
in revenue management: a fixed amount of perishable capacity, high fixed costs
and non-storable demand. (If it were possible to store demand, one would store
all of it and sell seats right before capacity perished in decreasing price order.)
If variable costs cannot be neglected, the product’s contribution margin can
usually be considered instead of the price (Zehle, 1991).

In some recent articles, however, the development of new products is prop-
agated to allow the seller to reject some of the demand that has already been
accepted against a certain compensation or to reassign it to a different type
of capacity; see Biyalogorsky et al. (1999), Biyalogorsky and Gerstner (2004),
Gallego and Phillips (2004), and Gallego et al. (2004). The latter products are
frequently referred to as “flexible products” and are actually used in the hotel
and cruise line industries. Generally, however, concerns about public image
preclude their application (Biyalogorsky et al., 1999).

Although forecasting is considered an important ingredient for successful
implementation, it is usually omitted from capacity control models. Yet as-
sumption iv) is critical if new routes are offered or schedules are changed. The
problem is discussed in van Ryzin and McGill (2000) and solved by an adap-
tive algorithm. To the author’s knowledge, Bayesian demand learning is only
considered in the dynamic pricing context; see e.g. Farias and Van Roy (2006)
and the references given there. For a different perspective on capacity control
that can do completely without demand forecasts, see Ball and Queyranne
(2006).
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Assumption v) is even more crucial in practice. Many large carriers oper-
ate on a flight network with hubs. Due to the curse of dimensionality, network
capacity control is often tackled with approximate dynamic programming,
heuristics, or simulations. For the basics on capacity control for flight net-
works, see Phillips (2005, Chap. 8) or Talluri and van Ryzin (2004b, Chap.
3) and the references given there. When the existence of more compartments
(such as the business and economy compartments) is considered explicitly, is-
sues of upgrading are discussed e.g. in Biyalogorsky et al. (2005) and Lukasche-
witsch (2005). Although revenues are reported to improve by an additional
2.5 percent when network carriers optimize on the network level rather than
on single-legs, single-leg models are still widely used (Talluri and van Ryzin,
2004b, p. 82). In addition, they form important building blocks in many heuris-
tics for the network case (Talluri and van Ryzin, 2004b, p. 27).

Assumption vi) is standard in revenue management models. The first
model to consider a basic capacity control model in a competitive frame-
work is Netessine and Shumsky (2005). Strategic customers are considered in
Anderson and Wilson (2003) and Liu and van Ryzin (2005).

To facilitate mathematics, some models assume demand to be continuous
in contrast to the first part of assumption vii), see e.g. Curry (1990), Belobaba
(1987a), or Bodily and Weatherford (1995). However, discrete demand seems
more natural in real applications. The assumption of discrete time is not a
hard to implement, since time can be discretized e.g. by counting arbitrarily
small time intervals, by uniformization (Lippman, 1975), or by looking only at
the times when demand materializes (as Lin, 2004, did in a dynamic pricing
model). The latter approach turns the planning horizon into a random variable
representing the number of points in time when demand arrives. Although
most capacity control models use a discrete time approach, Liang (1999),
Zhao and Zheng (2001), and Feng and Xiao (2006a) use a continuous time
approach; a semi-Markov decision process is modeled in Walczak (2001) and
Brumelle and Walczak (2003).

Papastavrou et al. (1996), Kleywegt and Papastavrou (1998, 2001) and
van Slyke and Young (2000) demonstrate that the capacity control problem
can also be formulated as a (stochastic) knapsack problem. They use this
approach to handle group bookings that must be accepted or rejected as a
whole. Lee and Hersh (1993) and Brumelle and Walczak (2003) consider group
bookings within the framework of Markov decision processes. Among other
things, they show that capacity control mechanisms that are suitable under
assumption viii), such as the control by protection levels, are not optimal
for total accept/deny decisions. According to Farley (2003, p. 155), small
group bookings are usually either treated as individual bookings; airlines rely
on manual processes to price and book larger groups. Eguchi and Belobaba
(2004) give a recent overview of the literature on implemented group booking
processes in airline revenue management.

In contrast to assumption ix), a significant proportion of tickets are can-
celed (strictly) prior to departure in airline applications. In addition, some


