dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Handbook of Game Theory

Petyon Young, Shmuel Zamir

 

Verlag Elsevier Reference Monographs, 2014

ISBN 9780444537676 , 1024 Seiten

Format PDF, ePUB

Kopierschutz DRM

Geräte

116,00 EUR


 

Front Cover

1

Handbook of Game Theory

4

Copyright

5

Contents

6

Contributors

12

Preface

14

Acknowledgments

15

Introduction to the Series

16

Chapter 1: Rationality

18

1.1 Neoclassical Rationality

19

1.1.1 Substantive or procedural?

20

1.1.1.1 Evolution

20

1.1.2 Rationality as consistency

21

1.1.3 Positive or normative?

22

1.2 Revealed Preference

22

1.2.1 Independence of irrelevant alternatives

23

1.2.1.1 Aesop

23

1.2.1.2 Utility

24

1.2.1.3 Causal utility fallacy

24

1.2.2 Revealed preference in game theory

24

1.3 Decisions under Risk

25

1.3.1 VN&M utility functions

25

1.3.1.1 Attitudes to risk

25

1.3.1.2 Unbounded utility?

26

1.3.1.3 Utilitarianism

26

1.4 Bayesian Decision Theory

27

1.4.1 Savage's theory

27

1.4.1.1 Bayes' rule

28

1.4.2 Small worlds

28

1.4.2.1 Bayesianism?

29

1.4.2.2 Where do Savage's priors come from?

29

1.4.2.3 When are the worlds of game theory small?

30

1.4.2.4 Common priors?

31

1.5 Knowledge

31

1.5.1 Knowledge as commitment

31

1.5.1.1 Contradicting knowledge?

32

1.5.2 Common knowledge

33

1.5.3 Common knowledge of rationality?

34

1.5.3.1 Counterfactuals

34

1.6 Nash Equilibrium

35

1.6.1 Evolutionary game theory

36

1.6.2 Knowledge requirements

36

1.6.3 Equilibrium selection problem

37

1.6.3.1 Refinements of Nash equilibrium

37

1.7 Black Boxes

38

1.7.1 Nash program

39

1.7.2 Other preplay activity

40

1.8 Conclusion

41

Acknowledgments

41

References

42

Chapter 2: Advances in Zero-Sum Dynamic Games

44

2.1 Introduction

46

2.1.1 General model of repeated games (RG)

47

2.1.2 Compact evaluations

48

2.1.3 Asymptotic analysis

48

2.1.4 Uniform analysis

49

2.2 Recursive Structure

50

2.2.1 Discounted stochastic games

50

2.2.2 General discounted repeated games

51

2.2.2.1 Recursive structure

51

2.2.2.2 Specific classes of repeated games

52

2.2.3 Compact evaluations and continuous time extension

53

2.3 Asymptotic Analysis

55

2.3.1 Benchmark model

55

2.3.2 Basic results

56

2.3.2.1 Incomplete information

56

2.3.2.2 Stochastic games

57

2.3.3 Operator approach

57

2.3.3.1 Nonexpansive monotone maps

58

2.3.3.2 Applications to RG

60

2.3.4 Variational approach

61

2.3.4.1 Discounted values and variational inequalities

62

2.3.4.2 General RG and viscosity tools

64

2.3.4.3 Compact discounted games and comparison criteria

68

2.4 The Dual Game

69

2.4.1 Definition and basic results

69

2.4.2 Recursive structure and optimal strategies of the noninformed player

70

2.4.3 The dual differential game

71

2.4.4 Error term, control of martingales, and applications to price dynamics

72

2.5 Uniform Analysis

74

2.5.1 Basic results

74

2.5.1.1 Incomplete information

74

2.5.1.2 Stochastic games

75

2.5.1.3 Symmetric case

75

2.5.2 From asymptotic value to uniform value

75

2.5.3 Dynamic programming and MDP

76

2.5.4 Games with transition controlled by one player

77

2.5.5 Stochastic games with signals on actions

78

2.5.6 Further results

79

2.6 Differential Games

80

2.6.1 A short presentation of differential games (DG)

80

2.6.2 Quantitative differential games

81

2.6.3 Quantitative differential games with incomplete information

82

2.7 Approachability

85

2.7.1 Definition

85

2.7.2 Weak approachability and quantitative differential games

86

2.7.3 Approachability and B-sets

87

2.7.4 Approachability and qualitative differential games

88

2.7.5 Remarks and extensions

89

2.8 Alternative Tools and Topics

90

2.8.1 Alternative approaches

90

2.8.1.1 A different use of the recursive structure

90

2.8.1.2 No signals

90

2.8.1.3 State dependent signals

90

2.8.1.4 Incomplete information on the duration

90

2.8.1.5 Games with information lag

90

2.8.2 The ``Limit Game''

91

2.8.2.1 Presentation

91

2.8.2.2 Examples

91

2.8.2.3 Specific Properties

91

2.8.3 Repeated games and differential equations

92

2.8.3.1 RG and PDE

92

2.8.3.2 RG and evolution equations

92

2.8.4 Multimove games

93

2.8.4.1 Alternative evaluations

93

2.8.4.2 Evaluation on plays

93

2.8.4.3 Stopping games

93

2.9 Recent Advances

94

2.9.1 Dynamic programming and games with an informed controller

94

2.9.1.1 General evaluation and total variation

94

2.9.1.2 Dynamic programming and TV-asymptotic value

95

2.9.1.3 Dynamic programming and TV-uniform value

95

2.9.1.4 Games with a more informed controller

95

2.9.1.5 Comments

96

2.9.2 Markov games with incomplete information on both sides

96

2.9.3 Counter examples for the asymptotic approach

97

2.9.3.1 Counter example for finite state stochastic games with compact action spaces

97

2.9.3.2 Counter examples for games with finite parameter sets

97

2.9.3.3 Oscillations

98

2.9.3.4 Regularity and o-minimal structures

98

2.9.4 Control problem, martingales, and PDE

99

2.9.5 New links between discrete and continuous time games

100

2.9.5.1 Multistage approach

100

2.9.5.2 Discretization of a continuous time game

100

2.9.5.3 Stochastic games with short stage duration

101

2.9.5.4 Stochastic games in continuous time

102

2.9.5.5 Incomplete information games with short stage duration

102

2.9.6 Final comments

103

Acknowledgments

104

References

104

Chapter 3: Games on Networks

112

3.1 Introduction and Overview

113

3.2 Background Definitions

115

3.2.1 Players and networks

115

3.2.2 Games on networks

117

3.3 Strategic Complements and Strategic Substitutes

120

3.3.1 Defining strategic complements and substitutes

120

3.3.2 Existence of equilibrium

121

3.3.2.1 Games of strategic complements

121

3.3.2.2 Games of strategic substitutes and other games on networks

122

3.3.2.3 Games with strategic substitutes, continuous action spaces and linear best-replies

123

3.3.3 Two-action games on networks

125

3.3.3.1 Changes in behaviors as the network varies

126

3.3.3.2 Coordination games

126

3.3.3.3 Stochastically stable play in coordination games on networks

129

3.4 A Model with Continuous Actions, Quadratic Payoffs, and Strategic Complementarities

133

3.4.1 The benchmark quadratic model

133

3.4.1.1 Katz-Bonacich network centrality and strategic behavior

134

3.4.1.2 Nash equilibrium

135

3.4.1.3 Welfare

137

3.4.2 The model with global congestion

139

3.4.3 The model with ex ante heterogeneity

140

3.4.4 Some applications of the quadratic model

141

3.4.4.1 Crime

141

3.4.4.2 Education

143

3.4.4.3 Industrial organization

145

3.4.4.4 Cities

146

3.4.4.5 Conformity and conspicuous effects

147

3.5 Network Games with Incomplete Information

149

3.5.1 Incomplete information and contagion effects

150

3.5.1.1 A model of network games with incomplete information

150

3.5.1.2 Monotonicity of equilibria

152

3.5.1.3 A dynamic best reply process

152

3.5.2 Incomplete information about payoffs

156

3.5.3 Incomplete information with communication in networks

157

3.6 Choosing Both Actions and Links

158

3.6.1 Coordination games

158

3.6.2 Network formation in quadratic games

162

3.6.3 Games with strategic substitutes

166

3.7 Repeated Games and Network Structure

167

3.8 Concluding Remarks and Further Areas of Research

168

3.8.1 Bargaining and exchange on networks

169

3.8.2 Risk-sharing networks

171

3.8.3 Dynamic games and network structure

171

3.8.4 More empirical applications based on theory

172

3.8.5 Lab and field experiments

173

Acknowledgments

173

References

174

Chapter 4: Reputations in Repeated Games

182

4.1 Introduction

183

4.1.1 Reputations

183

4.1.2 The interpretive approach to reputations

184

4.1.3 The adverse selection approach to reputations

184

4.2 Reputations with Short-Lived Players

185

4.2.1 An example

185

4.2.2 The benchmark complete information game

187

4.2.3 The incomplete information game and commitment types

188

4.2.4 Reputation bounds

190

4.2.4.1 Relative entropy

190

4.2.4.2 Bounding the one-step ahead prediction errors

192

4.2.4.3 From prediction bounds to payoffs

193

4.2.4.4 The Stackelberg bound

197

4.2.5 More general monitoring structures

198

4.2.6 Temporary reputations under imperfect monitoring

199

4.2.6.1 The implications of reputations not disappearing

203

4.2.6.2 The contradiction and conclusion of the proof

208

4.2.7 Interpretation

208

4.2.8 Exogenously informative signals

210

4.3 Reputations with Two Long-Lived Players

213

4.3.1 Types vs. actions

214

4.3.2 An example: The failure of reputation effects

214

4.3.3 Minmax-action reputations

218

4.3.3.1 Minmax-action types

218

4.3.3.2 Conflicting interests

221

4.3.4 Discussion

222

4.3.4.1 Weaker payoff bounds for more general actions

223

4.3.4.2 Imperfect monitoring

224

4.3.4.3 Punishing commitment types

226

4.4 Persistent Reputations

227

4.4.1 Limited observability

228

4.4.2 Analogical reasoning

231

4.4.3 Changing types

235

4.4.3.1 Cyclic reputations

235

4.4.3.2 Permanent reputations

238

4.4.3.3 Reputation as separation

239

4.5 Discussion

245

4.5.1 Outside options and bad reputations

245

4.5.2 Investments in reputations

247

4.5.3 Continuous time

250

4.5.3.1 Characterizing behavior

251

4.5.3.2 Reputations without types

252

Acknowledgments

253

References

253

Chapter 5: Coalition Formation

256

5.1 Introduction

257

5.2 The Framework

261

5.2.1 Ingredients

262

5.2.2 Process of coalition formation

264

5.2.3 Equilibrium process of coalition formation

264

5.2.4 Some specific settings

266

5.2.4.1 State spaces

266

5.2.4.2 Characteristic functions and partition functions

267

5.2.4.3 Remarks on protocols and effectivity correspondences

270

5.2.5 Remarks on the response protocol

272

5.3 The Blocking Approach: Cooperative Games

273

5.3.1 The setting

274

5.3.2 Blocking

275

5.3.3 Consistency and farsightedness

276

5.3.4 The farsighted stable set

278

5.3.5 Internal blocking

279

5.3.5.1 A recursive definition

279

5.3.5.2 EPCF and the farsighted stable set with internal blocking

280

5.3.5.3 Characteristic functions

283

5.3.5.4 Effectivity without full support

286

5.3.5.5 Internal blocking in the presence of externalities

289

5.3.6 Beyond internal blocking

293

5.3.6.1 Farsighted stability for characteristic functions

293

5.3.6.2 Farsighted stability for games with externalities

296

5.4 The Bargaining Approach: Noncooperative Games

300

5.4.1 Ingredients of a coalitional bargaining model

301

5.4.1.1 The protocol

301

5.4.1.2 Possibilities for changing or renegotiating agreements

303

5.4.1.3 Payoffs in real time or not

303

5.4.1.4 Majority versus unanimity

304

5.4.2 Bargaining on partition functions

304

5.4.2.1 Equilibrium in a real-time bargaining model

304

5.4.2.2 Two elementary restrictions

306

5.4.2.3 EPCF and bargaining equilibrium

307

5.4.3 Some existing models of noncooperative coalition formation

308

5.4.3.1 The standard bargaining problem

309

5.4.3.2 Coalitional bargaining with irreversible agreements

311

5.4.3.3 Equilibrium coalition structure

314

5.4.4 Reversibility

317

5.5 The Welfare Economics of Coalition Formation

320

5.5.1 Two sources of inefficiency

321

5.5.2 Irreversible agreements and efficiency

323

5.5.3 Reversible agreements and efficiency

327

5.5.3.1 Temporary agreements

327

5.5.3.2 Renegotiation

328

5.6 Coalition Formation: The Road Ahead

336

Acknowledgments

339

References

339

Chapter 6: Stochastic Evolutionary Game Dynamics

344

6.1 Evolutionary Dynamics and Equilibrium Selection

345

6.1.1 Evolutionarily stable strategies

346

6.1.2 Stochastically stable sets

348

6.2 Equilibrium Selection in 2 2 Games

352

6.2.1 A simple model

352

6.2.2 The unperturbed process

353

6.2.3 The perturbed process

354

6.3 Stochastic Stability in Larger Games

357

6.3.1 A canonical model of adaptive learning

358

6.3.2 Markov processes and rooted trees

359

6.3.3 Equilibrium selection in larger games

362

6.4 Bargaining

366

6.4.1 An evolutionary model of bargaining

367

6.4.2 The case of heterogeneous agents

370

6.4.3 Extensions: Sophisticated agents and cooperative games

370

6.5 Public Goods

371

6.5.1 Teamwork

372

6.5.2 Bad apples

375

6.5.3 The volunteer's dilemma

378

6.5.4 General public-good games and potential

380

6.6 Network Games

381

6.7 Speed of Convergence

386

6.7.1 Autonomy

388

6.7.2 Close-knittedness

389

6.8 Concluding Remarks

394

References

395

Chapter 7: Advances in Auctions

398

7.1 Introduction

399

7.2 First-Price Auctions: Theoretical Advances

400

7.2.1 Mixed-strategy equilibria

401

7.2.2 Asymmetric buyers: Existence of mixed and pure-strategy equilibria

402

7.2.3 Relaxation of symmetry and independence

403

7.2.4 Monotonicity and the role of tie-breaking rules

405

7.2.5 Revenue comparisons

406

7.3 Multiunit Auctions

408

7.3.1 Efficient ascending-bid auctions

408

7.3.2 Multiple heterogeneous items

412

7.4 Dynamic Auctions

413

7.4.1 Dynamic population

414

7.4.2 Repeated ascending-price auctions

416

7.5 Externalities in Single-Object Auctions

419

7.5.1 A general social choice model

419

7.5.2 Complete information

420

7.5.3 Incomplete information

421

7.6 Auctions with Resale

422

7.6.1 First-price and second-price auctions

423

7.6.2 Seller's optimal mechanism

424

7.6.3 Further results

425

7.7 All-Pay Auctions

426

7.7.1 Complete information

427

7.7.2 Incomplete information

429

7.7.3 Multiple prizes

430

7.7.4 Bid-dependent rewards

431

7.7.5 Contests versus lotteries

432

7.7.6 All-pay auctions with spillovers

433

7.7.7 Bid caps

434

7.7.8 Research contests

435

7.7.9 Blotto games

436

7.7.10 Other topics

438

7.8 Incorporating Behavioral Economics

438

7.8.1 Regret

439

7.8.2 Impulse balance

440

7.8.3 Reference points

442

7.8.4 Buy-it-now options

443

7.8.5 Level-k bidding

443

7.8.6 Spite

444

7.8.7 Ambiguity

445

7.9 Position Auctions in Internet Search

447

7.9.1 First-price pay-per-click auctions

448

7.9.2 Second-price pay-per-click auctions

449

7.9.3 Other formats

451

7.10 Spectrum Auctions

454

7.10.1 3G auctions

454

7.10.2 4G auctions

457

7.11 Concluding Remarks

461

Acknowledgments

461

References

462

Chapter 8: Combinatorial Auctions

472

8.1 Introduction

472

8.2 Supporting Prices

474

8.2.1 The core

479

8.3 Incentives

481

8.3.1 When VCG is not in the core

482

8.3.2 Ascending implementations of VCG

484

8.3.3 What is an ascending auction?

486

8.3.4 The clock-proxy auction

488

8.4 Complexity Considerations

489

8.4.1 Exact methods

490

8.4.2 Approximation

490

References

491

Chapter 9: Algorithmic Mechanism Design: Through the lens of Multiunit auctions

494

9.1 Introduction

495

9.2 Algorithmic Mechanism Design and This Survey

496

9.2.1 The field of algorithmic mechanism design

496

9.2.2 Our example: multiunit auctions

498

9.2.3 Where are we going?

500

9.3 Representation

500

9.3.1 Bidding languages

501

9.3.2 Query access to the valuations

503

9.3.2.1 Value queries

503

9.3.2.2 General communication queries

504

9.4 Algorithms

505

9.4.1 Algorithmic efficiency

505

9.4.2 Downward sloping valuations

507

9.4.3 Intractability

508

9.4.3.1 NP-Completeness

509

9.4.3.2 Communication complexity

510

9.4.4 Approximation

512

9.5 Payments, Incentives, and Mechanisms

513

9.5.1 Vickrey-Clarke-Groves mechanisms

515

9.5.2 The clash between approximation and incentives

516

9.5.3 Maximum-in-range mechanisms

518

9.5.4 Single parameter mechanisms

521

9.5.5 Multiparameter mechanisms beyond VCG?

524

9.5.6 Randomization

528

9.6 Conclusion

531

Acknowledgments

531

References

531

Chapter 10: Behavioral Game Theory Experiments and Modeling

534

10.1 Introduction

535

10.2 Cognitive Hierarchy and Level-k Models

537

10.2.1 P-beauty contest

540

10.2.2 Market entry games

543

10.2.3 LUPI lottery

545

10.2.4 Summary

547

10.3 Quantal Response Equilibrium

547

10.3.1 Asymmetric hide-and-seek game

548

10.3.2 Maximum value auction

550

10.4 Learning

552

10.4.1 Parametric EWA learning: interpretation, uses, and limits

553

10.4.2 fEWA functions

556

10.4.2.1 The change-detector function 0=x"011Ei(t)

557

10.4.2.2 The attention function, 0=x"010Eij(t)

559

10.4.3 fEWA predictions

562

10.4.4 Example: mixed strategy games

565

10.4.5 Summary

568

10.5 Sophistication and Teaching

568

10.5.1 Sophistication

569

10.5.2 Strategic teaching

571

10.5.3 Summary

576

10.6 Sociality

577

10.6.1 Public goods

577

10.6.2 Public goods with punishment

578

10.6.3 Negative reciprocity: ultimatums

579

10.6.4 Impure altruism and social image: dictator games

581

10.6.5 Summary

583

10.7 Conclusion

583

References

584

Chapter 11: Evolutionary Game Theory in Biology

592

11.1 Strategic Analysis—What Matters to Biologists?

593

11.2 Sex Ratios—How the Spirit of Game Theory Emerged in Biology

595

11.2.1 There is a hitch with fitness

596

11.2.2 Düsing's solution—the first biological game

596

11.2.3 Fisher's treatment of sex-ratio theory

597

11.2.4 Does it suffice to count grandchildren—what is the utility?

598

11.2.5 Evolutionary dynamics

599

11.2.6 Reproductive value

600

11.2.7 Haplodiploid sex-ratio theory

600

11.3 The Empirical Success of Sex-Ratio Theory

601

11.3.1 Experimental evolution

601

11.3.2 Measuring the slices of the cake

602

11.3.3 Local mate competition

603

11.3.4 Environmental sex determination and the logic of randomization

603

11.4 Animal Fighting and the Official Birth of Evolutionary Game Theory

605

11.4.1 The basic idea of an evolutionary game

605

11.4.2 The concept of an evolutionarily stable strategy

606

11.4.3 What does the Hawk-Dove game tell us about animal fighting?

607

11.4.4 The current view on limited aggression

608

11.5 Evolutionary Dynamics

609

11.5.1 The replicator equation

610

11.5.2 Adaptive dynamics and invasion fitness

610

11.5.3 Gene-frequency dynamics and the multilocus mess

611

11.5.4 Finite populations and stochasticity

612

11.6 Intragenomic Conflict and Willful Passengers

612

11.6.1 Meiotic drive

613

11.6.2 Example of an ultraselfish chromosome

613

11.6.3 Endosymbionts in conflict with their hosts

614

11.6.4 Wolbachia—master manipulators of reproduction

615

11.7 Cooperation in Microbes and Higher Organisms

615

11.7.1 Reciprocal altruism

616

11.7.2 Indirect reciprocity

617

11.7.3 Tragedy of the commons

618

11.7.4 Common interest

618

11.7.5 Common interest through lifetime monogamy

619

11.8 Biological Trade and Markets

620

11.8.1 Pollination markets

621

11.8.2 Principal-agent models, sanctioning and partner choice

621

11.8.3 Supply and demand

622

11.9 Animal Signaling—Honesty or Deception?

622

11.9.1 Education and the Peacock's tail

623

11.9.2 Does the handicap principle work in practice?

624

11.9.3 The rush for ever more handicaps, has it come to an end?

624

11.9.4 Warning signals and mimicry

625

References

628

Chapter 12: Epistemic Game Theory

636

12.1 Introduction and Motivation

637

12.1.1 Philosophy/Methodology

639

12.2 Main Ingredients

641

12.2.1 Notation

641

12.2.2 Strategic-form games

641

12.2.3 Belief hierarchies

642

12.2.4 Type structures

644

12.2.5 Rationality and belief

646

12.2.6 Discussion

648

12.2.6.1 State dependence and nonexpected utility

648

12.2.6.2 Elicitation

648

12.2.6.3 Introspective beliefs and restrictions on strategies

649

12.2.6.4 Semantic/syntactic models

649

12.3 Strategic Games of Complete Information

649

12.3.1 Rationality and common belief in rationality

650

12.3.2 Discussion

652

12.3.3 -Rationalizability

653

12.4 Equilibrium Concepts

654

12.4.1 Introduction

654

12.4.2 Subjective correlated equilibrium

655

12.4.3 Objective correlated equilibrium

656

12.4.4 Nash equilibrium

661

12.4.5 The book-of-play assumption

663

12.4.6 Discussion

665

12.4.6.1 Condition AI

665

12.4.6.2 Comparison with aumann1987correlated

666

12.4.6.3 Nash equilibrium

666

12.5 Strategic-Form Refinements

667

12.6 Incomplete Information

671

12.6.1 Introduction

671

12.6.2 Interim correlated rationalizability

674

12.6.3 Interim independent rationalizability

677

12.6.4 Equilibrium concepts

680

12.6.5 -Rationalizability

682

12.6.6 Discussion

683

12.7 Extensive-Form Games

684

12.7.1 Introduction

684

12.7.2 Basic ingredients

687

12.7.3 Initial CBR

691

12.7.4 Forward induction

693

12.7.4.1 Strong belief

693

12.7.4.2 Examples

694

12.7.4.3 RCSBR and extensive-form rationalizability

696

12.7.4.4 Discussion

698

12.7.5 Backward induction

701

12.7.6 Equilibrium

702

12.7.7 Discussion

704

12.8 Admissibility

706

12.8.1 Basics

707

12.8.2 Assumption and mutual assumption of rationality

708

12.8.3 Characterization

709

12.8.4 Discussion

710

12.8.4.1 Issues in the characterization of IA

711

12.8.4.2 Extensive-form analysis and strategic-form refinements

712

Acknowledgement

714

References

714

Chapter 13: Population Games and Deterministic Evolutionary Dynamics

720

13.1 Introduction

722

13.2 Population Games

724

13.2.1 Definitions

724

13.2.2 Examples

725

13.2.3 The geometry of population games

726

13.3 Revision Protocols and Mean Dynamics

729

13.3.1 Revision protocols

730

13.3.2 Information requirements for revision protocols

731

13.3.3 The stochastic evolutionary process and mean dynamics

732

13.3.4 Finite horizon deterministic approximation

734

13.4 Deterministic Evolutionary Dynamics

735

13.4.1 Definition

735

13.4.2 Incentives and aggregate behavior

735

13.5 Families of Evolutionary Dynamics

737

13.5.1 Imitative dynamics

738

13.5.1.1 Definition

740

13.5.1.2 Examples

741

13.5.1.3 Basic properties

742

13.5.1.4 Inflow-outflow symmetry

743

13.5.2 The best response dynamic and related dynamics

744

13.5.2.1 Target protocols and target dynamics

744

13.5.2.2 The best response dynamic

744

13.5.2.3 Perturbed best response dynamics

746

13.5.3 Excess payoff and pairwise comparison dynamics

748

13.5.3.1 Excess payoff dynamics

749

13.5.3.2 Pairwise comparison dynamics

750

13.6 Potential Games

751

13.6.1 Population games and full population games

752

13.6.2 Definition, characterization, and interpretation

752

13.6.3 Examples

753

13.6.4 Characterization of equilibrium

755

13.6.5 Global convergence and local stability

757

13.6.6 Local stability of strict equilibria

758

13.7 ESS and Contractive Games

759

13.7.1 Evolutionarily stable states

759

13.7.2 Contractive games

761

13.7.3 Examples

762

13.7.4 Equilibrium in contractive games

762

13.7.5 Global convergence and local stability

764

13.7.5.1 Imitative dynamics

764

13.7.5.2 Target and pairwise comparison dynamics: global convergence in contractive games

765

13.7.5.3 Target and pairwise comparison dynamics: local stability of regular ESS

767

13.8 Iterative Solution Concepts, Supermodular Games, and Equilibrium Selection

768

13.8.1 Iterated strict dominance and never-a-best-response

768

13.8.2 Supermodular games and perturbed best response dynamics

769

13.8.3 Iterated p-dominance and equilibrium selection

772

13.9 Nonconvergence of Evolutionary Dynamics

774

13.9.1 Examples

775

13.9.2 Survival of strictly dominated strategies

779

13.10 Connections and Further Developments

781

13.10.1 Connections with stochastic stability theory

781

13.10.2 Connections with models of heuristic learning

782

13.10.3 Games with continuous strategy sets

784

13.10.4 Extensive form games and set-valued solution concepts

785

13.10.5 Applications

786

Acknowledgements

787

References

787

Chapter 14: The Complexity of Computing Equilibria

796

14.1 The Task

796

14.2 Problems and Algorithms

797

14.3 Good Algorithms

798

14.4 P and NP

801

14.5 Reductions and NP-complete Problems

803

14.6 The Complexity of Nash Equilibrium

806

14.7 Approximation, Succinctness, and Other Topics

818

Acknowledgments

825

References

825

Chapter 15: Theory of Combinatorial Games

828

15.1 Motivation and an Ancient Roman War-Game Strategy

829

15.2 The Classical Theory, Sum of Games, Complexity

832

15.2.1 Complexity, hardness, and completeness

837

15.3 Introducing Draws

838

15.4 Adding Interactions Between Tokens

843

15.5 Partizan Games

848

15.5.1 Two examples: Hackenbush and Domineering

849

15.5.2 Outcomes and sums

850

15.5.3 Values

852

15.5.4 Simplest forms

853

15.5.5 Numbers

854

15.5.6 Infinitesimals

856

15.5.7 Stops and the mean value

857

15.6 Misère Play

857

15.6.1 Misère Nim value

858

15.6.2 Genus theory

859

15.6.3 Misère canonical form

860

15.6.4 Misère quotients

861

15.7 Constraint Logic

862

15.7.1 The constraint-logic framework

864

15.7.2 One-player games

865

15.7.2.1 Bounded games

866

15.7.2.2 Unbounded games

868

15.7.3 Two-player games

871

15.7.4 Team games

872

15.8 Conclusion

873

Acknowledgment

874

References

874

Chapter 16: Game Theory and Distributed Control**

878

16.1 Introduction

879

16.2 Utility Design

882

16.2.1 Cost/Welfare-sharing games

883

16.2.2 Achieving potential game structures

885

16.2.3 Efficiency of equilibria

887

16.3 Learning Design

890

16.3.1 Preliminaries: repeated play of one-shot games

890

16.3.2 Learning Nash equilibria in potential games

891

16.3.2.1 Fictitious play and joint strategy fictitious play

891

16.3.2.2 Simple experimentation dynamics

894

16.3.2.3 Equilibrium selection: log-linear learning and its variants

895

16.3.2.4 Near potential games

897

16.3.3 Beyond potential games and equilibria: efficient action profiles

898

16.3.3.1 Learning efficient pure Nash equilibria

898

16.3.3.2 Learning pareto efficient action profiles

900

16.4 Exploiting the Engineering Agenda: State-Based Games

902

16.4.1 Limitations of strategic form games

903

16.4.1.1 Limitations of protocol design

903

16.4.1.2 Distributed optimization: consensus

905

16.4.2 State-based games

907

16.4.3 Illustrations

908

16.4.3.1 Protocol design

908

16.4.3.2 Distributed optimization

908

16.5 Concluding Remarks

912

References

913

Chapter 17: Ambiguity and Nonexpected Utility

918

17.1 Introduction

919

Part I Nonexpected Utility Theory Under Risk

921

17.2 Nonexpected Utility: Theories and Implications

921

17.2.1 Preliminaries

921

17.2.2 Three approaches

922

17.2.3 The existence of Nash equilibrium

923

17.2.4 Atemporal dynamic consistency

924

17.2.5 Implications for the theory of auctions

926

17.3 Rank-Dependent Utility Models

930

17.3.1 Introduction

930

17.3.2 Representations and interpretation

931

17.3.3 Risk attitudes and interpersonal comparisons ofrisk aversion

933

17.3.4 The dual theory

934

17.4 Cumulative Prospect Theory

936

17.4.1 Introduction

936

17.4.2 Trade-off consistency and representation

936

Part II Nonexpected Utility Theory Under Uncertainty

938

17.5 Decision Problems under Uncertainty

938

17.5.1 The decision problem

938

17.5.2 Mixed actions

940

17.5.3 Subjective expected utility

943

17.6 Uncertainty Aversion: Definition andRepresentation

946

17.6.1 The Ellsberg paradox

946

17.6.2 Uncertainty aversion

948

17.6.3 Uncertainty averse representations

949

17.7 Beyond Uncertainty Aversion

952

17.7.1 Incompleteness

952

17.7.2 Smooth ambiguity model

953

17.8 Alternative Approaches

955

17.8.1 Choquet expected utility

956

17.8.2 Uncertainty aversion revisited

958

17.8.3 Other models

959

17.9 Final Remarks

960

Acknowledgments

960

References

960

Chapter 18: Calibration and Expert Testing

966

18.1 Introduction

967

18.2 Terminology and Notation

968

18.3 Examples

971

18.3.1 Example 1

971

18.3.2 Example 2

972

18.3.3 Example 3

973

18.4 Calibration

974

18.4.1 Definition and result

974

18.4.2 Calibrated forecasting rule

975

18.4.3 Sketch of proof

976

18.4.4 Sketch of proof of Blackwell's theorem

978

18.5 Negative Results

979

18.5.1 Generalizations of Foster and Vohra's result

980

18.5.2 Prequential principle

982

18.5.3 Interpretations

983

18.6 Positive Results

985

18.6.1 Category tests

985

18.6.2 A simple example of a good test

986

18.6.3 Other good tests

987

18.6.4 Good “prequential” tests

989

18.7 Restricting the Class of Allowed Data-Generating Processes

990

18.8 Multiple Experts

992

18.9 Bayesian and Decision-Theoretic Approachesto Testing Experts

995

18.9.1 Bayesian approach

995

18.9.2 Decision-theoretic approach

996

18.10 Related Topics

997

18.10.1 Falsifiability and philosophy of science

997

18.10.2 Gaming performance fees by portfolio managers

998

Acknowledgment

1000

References

1000

Index

1002