dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Reliability in Computing - The Role of Interval Methods in Scientific Computing

Ramon E. Moore

 

Verlag Elsevier Reference Monographs, 2014

ISBN 9781483277844 , 447 Seiten

Format PDF

Kopierschutz DRM

Geräte

54,95 EUR


 

Front Cover

1

Reliability in Computing: The Role of Interval Methods in Scientific Computing

4

Copyright Page

5

Table of Contents

6

Contributors

10

Preface

14

Acknowledgments

16

Part 1: Computer Arithmetic and Mathematical Software

18

Chapter 1. ARITHMETIC FOR VECTOR PROCESSORS

20

ABSTRACT

20

1. INTRODUCTION

20

2. THE STATE OF THE ART

25

3. FAST COMPUTATION OF SUMS AND SCALAR PRODUCTS

29

4. SUMMATION WITH ONLY ONE ROW OF ADDERS

39

5. SYSTEMS WITH LARGE EXPONENT RANGE AND FURTHER REMARKS

45

6. APPLICATION TO MULTIPLE PRECISION ARITHMETIC

50

7. CONTEMPORARY FLOATING-POINT ARITHMETIC

53

8. LITERATURE

57

Chapter 2. FORTRAN-SC, A FORTRAN Extension for Engineering/Scientific Computation with Access to ACRITH: Language Description with Examples

60

Abstract

60

1. Introduction

61

2. Development of FORTRAN-SC

62

3. Main Language Concepts

63

4. Language Description with Examples

65

5. Implementation of FORTRAN-SC

77

References

78

Chapter 3. FORTRAN-SC A FORTRAN Extension for Engineering/Scientific Computation with Access to ACRITH: Demonstration of the Compiler and Sample Programs

80

Abstract

80

Introduction

81

Example 1 : Interval Newton Method

81

Example 2 : Automatic Differentiation

84

Example 3 : Runge-Kutta Method

88

Example 4 : Gaussian Elimination Method

90

Example 5 : Verified Solution of a Linear System

93

References

96

Chapter 4. Reliable Expression Evaluation in PASCAL-SC

98

Abstract

98

1. Floating-point arithmetic

99

2. Interval arithmetic

101

3. The optimal scalar product

101

4. Complex floating-point and complex interval arithmetic

102

5. Matrix and vector arithmetic

103

6. Accurate Operations and Problem Solving Routines

103

7. Transformation of arithmetic expressions

104

8. Solution of nonlinear systems

105

9. The data type dotprecision

107

10. Dotproduct expressions

109

11. Conclusion

112

References

113

Chapter 5. Floating-Point Standards — Theory and Practice

116

1. Introduction

116

2. The Standards

116

3. Implementations

119

4. Software Support

121

5. Conclusions

123

References

123

Chapter 6. Algorithms for Verified Inclusions: Theory and Practice

126

Summary

126

0. Introduction

127

1. Basic theorems

128

2. Practical verification on the computer

131

3. Interactive Programming Environment

135

4. References

142

Chapter 7. Applications of Differentiation Arithmetic

144

Abstract

144

1. Differentiation Arithmetic – Why, What, and How?

144

2. Why? – Motivation

145

3 . What? – Component tools

147

4. Conditions on f

158

5. How to use it? – Applications

158

6. Acknowledgements

163

References

163

Part 2: Linear and Nonlinear Systems

166

Chapter 8. INTERVAL ACCELERATION OF CONVERGENCE

168

Abstract

168

1. INTRODUCTION

169

2. EXAMPLES

172

3. DEFINITIONS AND NOTATION

175

4. INTERVAL METHODS

177

5. HOW CAN WE GET BOUNDS ON A GIVEN POINT-SEQUENCE ?

180

6. ACCELERATION OF CONVERGENCE

181

REFERENCES

186

Chapter 9. SOLVING SYSTEMS OF LINEAR INTERVAL EQUATIONS

188

0. Introduction

188

1. Bounding the solutions

188

2. Computing the xy's

191

3. Explicit formulae for x, x

194

4. Inverse interval matrix

196

References

197

Chapter 10. Interval Least Squares — a Diagnostic Tool

200

Introduction

200

Linearity

203

Interval Notation

205

Effects of Nonlinearity

206

Interval Linear Equations

206

Normal Equations

207

QR Approach

207

Nonlinearity Indices

209

Test Data

210

Test Results

212

Diagnosing Collinearity

218

Concluding Remarks

220

References

221

Chapter 11. Existence of Solutions and Iterations for Nonlinear Equations

224

1. Introduction

224

2. Bisection

224

3. Brouwer Fixed–Point Theorem

226

4. Avoiding the Brouwer Fixed-Point Theorem

231

5. Iteration methods

240

References

242

Chapter 12. INTERVAL METHODS FOR ALGEBRAIC EQUATIONS

246

1. Introduction

246

2. Notation

246

3. Preliminaries

247

4. Interval Methods for Single Equations

249

5. Interval Methods for Systems of Equations

258

References

264

Chapter 13. Error Questions in the Computation of Solution Manifolds of Parametrized Equations

266

1.Introduction

266

2. Discretization Errors

268

3. Continuation Methods

273

4. Triangulations and Foldpoint Calculations

276

5. References

282

Chapter 14. THE ENCLOSURE OF SOLUTIONS OF PARAMETER-DEPENDENT SYSTEMS OF EQUATIONS

286

1 . Introduction

286

2. Covering the solution set

290

3. Homogeneous linear interval equations

295

4. Numerical examples

298

5. Final remarks

301

References

302

Part 3: Optimization

304

Chapter 15. AN OVERVIEW OF GLOBAL OPTIMIZATION USING INTERVAL ANALYSIS

306

Abstract

306

1. Introduction

306

2. The fundamental theorem

306

3. Newton's method

308

4. Existence

311

5. Introductory remarks on optimization

311

6. Monotonicity

313

7. Concavity

313

8. Deletion of boxes where f is large

314

9. Feasibility

315

10. Termination

315

11. A global optimization algorithm

315

12. An example

318

13. Other examples

319

14. Conclusion

320

References

321

Chapter 16. Philosophy and Practicalities of Interval Arithmetic

326

Abstract

326

1.0 The scope of interval bounds

326

2.0 Input/Output conventions

328

3.0 Universal Applicability

331

4.0 Using Bounds on Observation Errors

332

5.0 Summary

339

Chapter 17. SOME RECENT ASPECTS OF INTERVAL ALGORITHMS FOR GLOBAL OPTIMIZATION

342

Summary

342

1. Introduction

342

2. Convergence properties of the algorithm

346

3. Global optimization over unbounded domains

347

4. Nonsmooth optimization

350

5. Numerical results

353

Acknowledgement

355

References

355

Chapter 18. The Use of Interval Arithmetic in Uncovering Structure of Linear Systems

358

ABSTRACT

358

I. INTRODUCTION

358

II. TESTS TO UNCOVER THE STRUCTURE OF ANY LINEAR SYSTEM

360

III. TESTS TO UNCOVER THE STRUCTURE OF THE CONSTRAINT MATRIX IN LINEAR PROGRAMMING PROBLEMS

365

IV. CONCLUSION

369

BIBLIOGRAPHY

369

Part 4: Operator Equations

372

Chapter 19. THE ROLE of ORDER in COMPUTING

374

1. Number systems

374

2. Interval lattices

377

3. Lattice-ordered algebras

378

4. Hypercubes

382

5. Positive linear operators

384

6. Random numbers

386

7. The binary digits of 1/ 2

388

8. Continued fractions

391

REFERENCES

394

Chapter 20. INTERVAL METHODS FOR OPERATOR EQUATIONS

396

1. Introduction

396

2. General model

396

3. Nonlinear initial value problems for ordinary differential equations

398

4. Comparison for nonlinear two point boundary value problems

400

5. Nonlinear elliptic boundary value problems. For simplicity, we only consider the

5. Nonlinear elliptic boundary value problems. For simplicity, we only consider the

403

403

References

406

Chapter 21. Boundary Implications for Stability Properties: Present Status

408

1. Introduction

408

3. Interval matrices

412

4. Applications

414

Acknowledgement

415

References

416

Chapter 22. VALIDATING COMPUTATION IN A FUNCTION SPACE

420

1. Introduction

421

2. Ultra-arithmetic and Roundings

422

References

442

Epilogue: A Poem about My Life

444