dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Molecular Dynamics of Glass-Forming Systems - Effects of Pressure

Molecular Dynamics of Glass-Forming Systems - Effects of Pressure

George Floudas, Marian Paluch, Andrzej Grzybowski, Kai Ngai

 

Verlag Springer-Verlag, 2010

ISBN 9783642049026 , 176 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

213,99 EUR


 

Preface

8

Contents

12

Chapter 1: The Glass ``Transition´´

14

1.1 Introduction

14

1.2 Pressure Dependence of the Structural (a-) Relaxation Time

18

1.3 The Glass Transition Temperature

30

1.4 The Concept of Fragility

33

1.5 Relative Importance of Thermal Energy and Density

36

Appendix1

42

Appendix2

42

References

47

Chapter 2: Origin of Glass Formation

51

2.1 Thermodynamic Scaling of Molecular Dynamics in Viscous Systems

51

2.1.1 A General Idea of Thermodynamic Scaling

51

2.1.2 A New Measure of the Relative Temperature-Volume Influence on Molecular Dynamics

54

2.1.3 The Relaxation Time Description in Accordance with Thermodynamic Scaling

59

2.1.4 Thermodynamic Scaling on Isothermal Conditions and Its Consequences

64

2.1.5 Doubts About the Thermodynamic Scaling Universality

67

2.2 The Role of Monomer Volume and Local Packing on the Glass-Transition Dynamics

73

References

76

Chapter 3: Models of Temperature-Pressure Dependence of Structural Relaxation Time

78

3.1 The Generalized Vogel-Fulcher-Tammann Equation

78

3.2 The Adam-Gibbs Model

79

3.3 The Avramov Model

82

3.4 Cluster Kinetics Model

86

3.5 Defect Diffusion Model

90

3.6 Dynamic Lattice Liquid Model

95

References

98

Chapter 4: New Physics Gained by the Application of Pressure in the Study of Dynamics of Glass Formers

100

4.1 Dynamics Under Pressure

100

4.2 General Dynamic Properties of Glass Formers Discovered by Applying Pressure

101

4.2.1 Coinvariance of taua and Width of Dispersion to Changes in P and T

101

4.2.2 Crossover of T or P Dependence of ta (or h ) at the Sameta (or h ) Independent on T, P, and V at the Crossover

104

4.2.2.1 Experimental Facts

104

4.2.2.2 Coupling Model Explanation

106

4.2.3 An Important Class of Secondary Relaxations Bearing Strong Connection to the a-Relaxation

109

4.2.3.1 Spin-Lattice Relaxation Weighted Stimulated-Echo Spectroscopy

110

4.2.3.2 Invariance of the Ratio tauJG /taua for Different T and P When taua Is Kept Constant

110

4.2.3.3 TVgamma-Dependence of tauJG

114

Evidence Indicating T-1V-gamma: Dependence Originating from the Primitive Relaxation

114

4.2.3.4 Dependences of the Global and Segmental Dynamics in Polymers on TVgamma: Same gamma but Different Functional Forms

115

4.2.3.5 Change of T-Dependence of JG beta-Relaxation Time and Relaxation Strength on Crossing Tg

116

4.2.3.6 Relation Between the Activation Energies of tauJG and taua in the Glassy State

117

4.2.3.7 Pressure-Temperature History Dependence of tauJG in the Glassy State

117

4.2.3.8 JG beta-Relaxation Causes Cage Decay and Terminates the Nearly Constant Loss

122

4.2.3.9 JG beta-Relaxation Is Responsible for the Anomalous T-Dependence of gamma-Relaxation Time

123

4.3 Conclusions

126

References

127

Chapter 5: Pressure Effects on Polymer Blends

132

5.1 Theoretical Background

132

5.2 Effect of Pressure on the Dynamics of Miscible Polymer Blends: Dynamic Heterogeneity

134

5.2.1 Athermal Polymer Blends/Copolymers (PI-PVE, PMMA/PEO)

136

5.2.1.1 PI-b-PVE

136

5.2.1.2 PMMA/PEO

138

5.2.2 Miscible But Not Athermal Polymer Blends (PS/PMPS, PS/PVME, and PCHMA/PaMS)

142

5.2.2.1 PS/PMPS

143

5.2.2.2 PS/PVME

147

5.2.2.3 PCHMA/PaMS

150

5.2.3 Polymer Blends with Strong Specific Interactions

151

5.3 Effect of Pressure on Nanophase Separated Copolymers

152

5.3.1 PMVE-b-PiBVE

153

5.3.2 pODMA-b-ptBA-b-pODMA

155

References

157

Chapter 6: Polypeptide Dynamics

159

6.1 Introduction

159

6.2 Polypeptide Liquid-to-Glass ``Transition´´ and its Origin

160

6.3 Correlation Length of a-Helices

169

6.4 Effects of Nanoconfinement on the Peptide Secondary Structure and Dynamics

172

6.4.1 ``Soft´´ Confinement: Confinement Within the Nanodomains of Block Copolypeptides

172

6.4.2 ``Hard´´ Confinement: Confinement Inside Nanoporous Anodic Aluminum Oxide

173

6.5 Conclusion

176

References

177

Index

179