dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Theoretical Modeling of Epitaxial Graphene Growth on the Ir(111) Surface

Holly Alexandra Tetlow

 

Verlag Springer-Verlag, 2017

ISBN 9783319659725 , 192 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

53,49 EUR


 

Supervisor’s Foreword

6

Abstract

8

Parts of this thesis have been published in the following journal articlesGrowth of epitaxial graphene: Theory and experiment, H. Tetlow, J. Posthuma de Boer, I.J. Ford, D.D. Vvedensky, J. Coraux, L. Kantorovich, Physics Reports, 542 (2014) 195–295.Ethylene decomposition on Ir(111): Initial path to graphene formation, Holly Tetlow, Joel Posthuma de Boer, Ian J. Ford, Dimitri D. Vvedensky, Davide Curcio, Luca Omiciuolo, Silvano Lizzit, Alessandro Baraldi, and Lev Kantorovich, Physical Chemistry Chemical Physics 18 (2016) 27897–27909.A free energy study of carbon clusters on Ir(111): Precursors to graphene growth, H. Tetlow, I. J. Ford, and L. Kantorovich, Journal of Chemical Physics 146 (2017) 044702.Hydrocarbon decomposition kinetics from first principles H. Tetlow, L. Kantorovich, In Progress.

9

Acknowledgements

10

Contents

12

1 Review of Epitaxial Graphene Growth

15

1.1 Epitaxial Graphene Growth

15

1.1.1 Experimental Techniques

16

1.2 The Graphene Growth Process

19

1.2.1 Producing a Carbon Source

19

1.2.2 Forming Carbon Clusters

28

1.2.3 Graphene Formation on Ir(111)

34

1.2.4 Graphene Substrate Interaction

37

1.2.5 Removing Defects

39

References

47

2 Theoretical Modelling Methods

50

2.1 Density Functional Theory

50

2.1.1 Formalism

50

2.1.2 The Exchange-Correlation Functional

52

2.1.3 Van der Waals Forces in DFT

53

2.2 Basis-Sets

55

2.2.1 K-Point Sampling

57

2.3 Pseudopotentials

58

2.4 The Nudged Elastic Band Method

59

2.4.1 Climbing Image NEB

60

2.5 Lattice Dynamics

61

2.5.1 Vibrational Free Energy

63

2.6 Core Level Binding Energies

64

2.7 Kinetics

64

2.7.1 Transition State Theory

65

2.7.2 Rate Equations

67

2.7.3 Kinetic Monte Carlo

68

2.7.4 Lattice-Based kMC

70

2.8 Molecular Dynamics

70

2.8.1 Canonical Ensemble: NVT

71

2.8.2 Langevin Thermostat

73

2.9 Ir(111) Surface Parameterisation

74

2.9.1 Bulk Lattice Constant

75

2.9.2 Ir(111) Surface

76

2.9.3 Plane Wave Cutoff Energy

77

References

78

3 Producing a Source of Carbon: Hydrocarbon Decomposition

80

3.1 Theoretical Method Outline

80

3.2 Decomposition Reaction Scheme

81

3.3 Hydrocarbon Species

82

3.4 Hydrogen

83

3.5 Photoemission Experiments

85

3.5.1 Binding Energy Calculations

86

3.5.2 Interpretation of XPS Data

87

3.6 Reaction Energy Barriers

89

3.7 Rate Equations

92

3.8 Conclusions

97

References

98

4 Hydrocarbon Decomposition: Kinetic Monte Carlo Algorithm

99

4.1 Method

99

4.2 Surface Lattice Grid

101

4.3 Hydrocarbon Species

102

4.4 Reactions

104

4.4.1 Hydrogenation and Dehydrogenation Reactions

105

4.4.2 H2 Desorption Reaction

106

4.4.3 C-C Breaking and C-C Recombination Reactions

107

4.4.4 Isomerisation Reactions

110

4.4.5 Diffusion

111

4.4.6 Product Species Fitting

112

4.5 Time Step Calculation

113

4.6 kMC Efficiency

114

4.7 Conclusions

116

5 Thermal Decomposition in Graphene Growth: Kinetic Monte Carlo Results

117

5.1 Temperature Ramping Programmed Growth

118

5.1.1 kMC Results

118

5.1.2 Comparison with Experimental Results

120

5.1.3 Energy Barrier Tuning

122

5.1.4 Comparison with Rate Equations

125

5.2 Fixed Temperature Programmed Growth (kMC)

126

5.3 Ethylene Decomposition on Pt(111)

128

5.3.1 Energy Barriers

129

5.3.2 kMC Results

130

5.4 Chemical Vapour Deposition

131

5.4.1 Ethylene

132

5.4.2 Methane

133

5.5 Conclusions

135

References

137

6 Beginnings of Growth: Carbon Cluster Nucleation

138

6.1 Classical Nucleation Theory

138

6.1.1 Derivation of ??(N)

139

6.2 Carbon Clusters

142

6.2.1 Rotational Multiplicity

142

6.3 Zero-Temperature Formation Energy

143

6.4 Temperature Dependence of the Work of Formation

145

6.5 Vibrational Free Energy Dependence on Cluster Type

147

6.6 Cluster Isomerisation During Growth

148

6.7 Conclusions

150

References

152

7 Removing Defects: Healing Single Vacancy Defects

153

7.1 Theoretical Method Outline

153

7.2 Single Vacancy Defects

154

7.3 Langevin Thermostat

154

7.3.1 Computation of Phonon DOS

155

7.3.2 Choice of the Damping Parameter

157

7.4 Molecular Dynamics Simulations of Defect Healing

158

7.4.1 System Configuration

158

7.4.2 Initialisation

158

7.4.3 Ethylene Molecule Deposition

159

7.4.4 Ethylene Molecule Starting Position

159

7.4.5 Simulation Results

162

7.4.6 Conclusions from the MD Simulations

166

7.4.7 Final States

167

7.5 NEB Healing of the Single Vacancy Defect

168

7.6 Conclusions

169

References

170

8 Final Remarks

171

8.1 Conclusions

171

8.2 Limitations and Further Work

174

References

176

Appendix A Hydrocarbon Decomposition

177

A.1 Lowest Energy Hydrocarbon Geometries

177

A.1.1 NEB Reaction Profiles

178

A.1.2 Core Level Binding Energy Calculations

182

A.1.3 Convergence of Energy Barriers with Number of Layers

182

A.1.4 H2 Desorption

184

A.1.5 Pre-exponential Factors

184

A.1.6 Vibrational Frequency Calculations and Coverage Effects

185

A.1.7 Rate Equations

186

Appendix B Carbon Clusters and Their Formation Energy at T=0

189

Reference

192