dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

An Innovative 3D-CFD-Approach towards Virtual Development of Internal Combustion Engines

Marco Chiodi

 

Verlag Vieweg+Teubner (GWV), 2011

ISBN 9783834881311 , 245 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

53,49 EUR

  • Sichtbeton-Mängel - Gutachterliche Einstufung, Mängelbeseitigung, Betoninstandsetzung und Betonkosmetik
    Handbuch der Baugrunderkennung - Geräte und Verfahren
    RFID-Baulogistikleitstand - Forschungsbericht zum Projekt 'RFID-unterstütztes Steuerungs- und Dokumentationssystem für die erweiterte Baulogistik am Beispiel Baulogistikleitstand für die Baustelle'
    IntelliBau - Anwendbarkeit der RFID-Technologie im Bauwesen
    Leitfaden für Bausachverständige - Rechtsgrundlagen - Gutachten - Haftung
    Lectures on Algebraic Geometry II - Basic Concepts, Coherent Cohomology, Curves and their Jacobians
    So funktioniert Mediation im Planen + Bauen - mit Fallbeispielen und Checklisten
    Baudichtstoffe - Erfolgreich Fugen abdichten
  • Innovations and Advanced Techniques in Computer and Information Sciences and Engineering
    Antriebslösungen - Mechatronik für Produktion und Logistik
    Light, Water, Hydrogen - The Solar Generation of Hydrogen by Water Photoelectrolysis
    Elektromagnetische Verträglichkeit
    Analysis and Correctness of Algebraic Graph and Model Transformations
    Handbuch Hochtemperatur-Werkstofftechnik - Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und -beschichtungen
    Bosch Autoelektrik und Autoelektronik - Bordnetze, Sensoren und elektronische Systeme

     

     

 

 

Acknowledgments

7

Table of Contents

8

Abstract

14

Zusammenfassung

18

Symbols, Subscripts and Abbreviations

22

Roman Symbols

22

Greek Symbols

29

Subscripts and Abbreviations

30

1 Introduction

33

1.1 Society and Transportation

33

1.2 The Fascination of Internal Combustion Engines

33

1.3 Internal Combustion Engines and Sustainable Transportation

34

1.3.1 Development Targets of Internal Combustion Engines in the Past

34

1.3.2 The Role of Alternative Engine Concepts

36

1.3.3 Development Targets of Internal Combustion Engines in the Future

36

1.3.3.1 General Improvement of actual Solutions

37

1.3.3.2 Downsizing and Turbo-Charging

37

1.3.3.3 Hybridization

37

1.3.3.4 Development of Innovative Combustion Solutions

38

1.3.3.5 Alternative Fuels

38

1.4 How to Face the Complexity of Future Internal- Combustion-Engines

40

2 Simulation of Internal Combustion Engines

42

2.1 Simulation towards Virtual Engine Development

43

2.1.1 One Tool for the Simulation of the Entire Engine?

43

2.1.1.1 Mechanical Numerical Analysis

44

2.1.1.2 Engine Operating Cycle Analyses

45

2.1.2 The Future Challenge: an improved Integration of Simulation Tools

47

2.2 Today’s Repartition of the Resources in Engine Development

49

2.3 Introduction to Engine Processes Modeling in the Simulation of the Operating Cycle

53

3 Engine Energy- Balance

57

3.1 Energy-Balance of the Combustion Chamber

57

3.2 Energy-Balance of the Entire Engine

58

3.3 The Role of Engine Energy-Balance in the Engine Development Process

60

4 Real Working-Process Analysis

61

4.1 Introduction

61

4.2 Fundamental Equations

63

4.3 Thermal State Equation of the Working Fluid

64

4.4 Engine Modeling (Engine-Specific Models)

64

4.4.1 Modeling of the Thermo-Physical Properties of the Working Fluid

65

4.4.2 Modeling of the Wall Heat-Transfer

66

4.4.3 Modeling of the Combustion Process

66

4.4.3.1 Empirical Models

67

4.4.3.2 Quasi-dimensional Models

72

4.5 Two Approaches in the Calculation of the Real Working-Process

75

4.5.1 Pressure Profile Calculation - Combustion Profile Supply

76

4.5.2 Combustion Profile Calculation - Pressure Profile Supply

76

4.6 The Role of Real Working-Process Analysis in the Engine Development Process

77

5 One-Dimensional Simulation (1D-CFD-Simulation)

80

5.1 Introduction

80

5.2 Engine Layout and Conservation Equations

81

5.3 The Role of the 1D-CFD-Simulation in the Engine Development Process

82

6 Three-Dimensional Simulation (3D-CFD Simulation)

84

6.1 Fundamental Equations

85

6.1.1 Mass Conservation Equation

85

6.1.2 Species Mass Conservation Equation

86

6.1.3 Momentum Conservation Equation (Navier-Stokes’ Equation)

86

6.1.4 Energy Conservation Equation

87

6.2 Engine Modeling

87

6.2.1 Universally-Valid 3D-CFD-Models

88

6.2.1.1 Modeling of the Thermo-physical Properties of the Working Fluid

88

6.2.1.2 Modeling of Non-Convective Processes

89

6.2.1.3 Turbulence Modeling

91

6.2.1.4 Combustion Models

98

6.2.1.5 Wall Heat-Transfer Models

99

6.2.2 Introduction to Engine-Specific 3D-CFD-Models

99

6.3 Discretization Practices (Numerical Implementation)

100

6.3.1 Spatial Flux Discretization

102

6.3.1.1 Low-Order Differencing Scheme – Upwind Differencing (UD)

102

6.3.1.2 Higher-Order Differencing Scheme

103

6.4 The Role of the 3D-CFD-Simulation in the Engine Development Process

103

7 Towards an improved 3D-CFD- Simulation

105

7.1 An innovative Fast-Response 3D-CFD-Tool: QuickSim

105

7.1.1 Fast Analysis

106

7.1.1.1 Mesh Discretization for DNS Simulations

108

7.1.1.2 Mesh Discretization for LES Simulations

108

7.1.1.3 Mesh Discretization for QuickSim Simulations

109

7.1.2 Reliable Calculation

110

7.1.3 User-Friendliness

111

7.1.4 Clear Representation of the Results

112

7.1.5 Cost Efficiency

113

7.1.5.1 Processor Utilization for QuickSim Simulations

113

7.2 Additional Features of QuickSim

114

7.2.1 Simulation of several successive Engine Operating Cycles

114

7.2.2 Extension of the 3D-CFD-Domain up to a Full-Engine Simulation

116

7.2.3 The Simulation of a Flow Test-Bench

119

7.3 Summary of the QuickSim Features

121

7.4 QuickSim’s Calculation Layout

122

8 3D-CFD-Modeling of the Thermodynamic Properties of the Working Fluid

126

8.1 Introduction

126

8.2 Chemical Composition of the Working Fluid Mixture

127

8.2.1 One-Step Fuel-Oxidation Reaction Mechanism

127

8.2.2 The Reality: More than Thousand Intermediate Products

129

8.3 Traditional Approach

131

8.4 QuickSim’s Approach: Few Species for the Description of the Working Fluid

132

8.4.1 QuickSim’s Approach: A universally-valid Chemical Reaction Scheme for the Description of Burned Gas

137

8.4.1.1 Chemical Equilibrium Assumption

139

8.4.1.2 The proposed Chemical Reaction Scheme

140

8.4.1.3 A “frozen” Composition at low Temperatures

142

8.4.1.4 Results: The Chemical Composition of Burned Gas

143

8.4.2 QuickSim’s Approach: Conclusive Modeling of the Thermodynamic Properties of Burned Gas

146

8.4.2.1 Heat Release at the Flame Front and Post-Oxidation of Exhaust Gas with Fresh Gas

148

8.4.2.2 Heat Exchange due to Dissociation Effects and Post-Oxidation within Exhaust Gas

150

8.4.2.3 Combustion Conversion Efficiency

153

9 3D-CFD-Modeling of the Combustion for SI-Engines

155

9.1 Introduction

155

9.2 Flame Propagation Modeling (Weller Model)

158

9.3 QuickSim’s Approach: Implementation Improvement

160

9.3.1 Numerical Implementation of the Flame Propagation Model

160

9.3.2 Numerical Inconsistencies at the Flame Front

163

9.3.2.1 Expedients for the Numerical Inconsistencies at the Flame Front

165

9.3.3 Local Two-Zones Model

166

9.3.4 Ignition Model

171

9.3.5 Final Implementation Procedure

173

9.4 Results

175

10 3D-CFD-Modeling of the Wall Heat-Transfer

177

10.1 Introduction

177

10.1.1 Phenomena Understanding, Calculation Approach and Considerations

178

10.2 State-of the-Art of Engine Heat-Transfer Calculationin the 3D-CFD-Simualtion

180

10.2.1 The Wall Function Approach

180

10.2.2 Low Reynolds Number Models

182

10.2.3 Phenomenological Heat-Transfer Models in the Real Working-Process Analysis (WP)

183

10.2.3.1 Motivation for a Phenomenological Approach

184

10.2.3.2 Woschni’s Correlation

184

10.2.3.3 Hohenberg’s Correlation

185

10.2.3.4 Bargende’s Correlation

185

10.2.4 Comparison between the 3D-CFD-Heat-Transfer (Wall- Function Model) and the Real Working-Process Analysis

187

10.2.4.1 Sensitivity Analysis of the 3D-CFD-Heat-Transfer calculated with a Wall-Function Model

190

10.2.5 QuickSim’s Approach: A new Phenomenological Heat- Transfer Model in the 3D-CFD-Simulation

194

10.2.5.1 The Heat-Transfer during the Working Cycle

195

10.2.5.2 The Heat-Transfer during the Charge Changing Period

201

10.3 Results

201

10.4 Influence of 3D-CFD-Heat-Transfer-Models on the Engine Energy-Balance

203

11 A Way towards Virtual Engine Development

206

11.1 Introduction

206

11.2 The Hardware: a turbocharged CNG Race-Engine

206

11.3 Setting of the 3D-CFD-Simulation

208

11.3.1 Initial Conditions and Properties of the Working Fluid

210

11.3.2 Boundary Conditions

211

11.4 CNG-Injector Model

213

11.4.1 Traditional Gas Injection Modeling

215

11.4.2 Gas Injection Modeling in QuickSim

216

11.5 3D-CFD-Domains limited to the Cylinder

218

11.5.1 3D-CFD-Simulation excluding the Fuel Injectors

218

11.5.2 3D-CFD-Simulation including the Fuel Injectors

221

11.6 Extension of the 3D-CFD-Domain: One Cylinder with the Airbox

226

11.6.1 Between Predictability and Results Consistency

227

11.6.1.1 QuickSim’s Improved Approach: The integrated 0D- and1D-CFD Simulationof the missing Cylinders

228

11.7 3D-CFD-Simulation of the Full Engine

231

11.7.1 Results and 3D-CFD-Flow Field Investigations on the Full Engine

232

11.7.1.1 Mixture Formation

234

11.7.1.2 Residual Gas Distribution

239

11.7.1.3 Turbulence

241

11.7.1.4 Combustion

243

11.7.1.5 Convergence of the Results

245

11.7.2 Result Comparison among different Operating Conditions

245

11.8 The Simulation of successive Operating Cycles

247

11.9 Result Comparison among the different Extensions of the 3D-CFD-Domain

250

12 Conclusion

252

13 Outlook

254

Appendix A

256

A.1 Vector and Matrix Analysis

256

Appendix B

258

B.1 Thermodynamic Properties of the Working Fluid

258

References

269