dummies
 

Suchen und Finden

Titel

Autor/Verlag

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Moisture Sensitivity of Plastic Packages of IC Devices

X.J. Fan, E. Suhir

 

Verlag Springer-Verlag, 2010

ISBN 9781441957191 , 558 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

255,73 EUR


 

Foreword

5

Preface

7

Series Preface

10

Contents

11

Contributors

13

1 Fundamental Characteristics of Moisture Transport, Diffusion, and the Moisture-Induced Damages in Polymeric Materials in Electronic Packaging

16

1.1 Introduction

16

1.2 Fickian and Non-Fickian Moisture Diffusion

18

1.3 Saturated Moisture Concentration

25

1.4 Water Sorption and Moisture Sorption

27

1.5 Characterization of Pore Size, Porosity, and Free Volume

28

1.6 Hygroscopic Swelling Measurement

31

1.7 Effect of Moisture on Fracture Toughness/Adhesion Strength

32

1.7.1 In Situ Fracture Toughness Measurement

32

1.7.2 Die Shear Test

34

1.8 Discussions

36

1.8.1 State of Moisture in Polymers

36

1.8.2 Total Moisture Volume Versus Volume Expansion Due to Hygroscopic Swelling

37

1.8.3 Effect of Fillers

38

1.8.4 Duration of the Moisture Diffusion

39

1.9 Concluding Remarks

41

References

41

2 Mechanism of Moisture Diffusion, Hygroscopic Swelling, and Adhesion Degradation in Epoxy Molding Compounds

44

2.1 Introduction

44

2.2 Moisture Diffusion in Plastic Encapsulated Microcircuits

46

2.2.1 Moisture Diffusion in a Package vs. in Bulk EMC

48

2.2.2 Interfacial Moisture Diffusion

48

2.2.3 Moisture Accommodation at Interfaces

50

2.2.4 Fickian Moisture Diffusion

51

2.2.5 Non-Fickian Dual-Stage Moisture Diffusion

52

2.3 Moisture Desorption

57

2.4 Second Run of Absorption (Re-sorption)

63

2.5 Hygroscopic Swelling

65

2.5.1 Characterization of CHS by Warpage Measurement of Bi-material Beams

67

2.5.2 Characterization of CHS by TMA/TGA

69

2.5.3 Characterization of CHS by Archimedes Principle

71

2.6 Moisture-Induced Adhesion Degradation

73

2.7 Conclusion

80

References

81

3 Real-Time Characterization of Moisture Absorptionand Desorption

85

3.1 Introduction

85

3.2 Background

87

3.3 Experimental Data

89

3.3.1 Material

89

3.3.2 Instrumentation

90

3.4 Moisture AbsorptionDesorption

91

3.4.1 Moisture Diffusivity

91

3.4.2 Saturated Moisture Content

92

3.4.3 Temperature Dependence of Diffusivity

95

3.5 Comparison with Literature Data

96

3.6 Application Moisture Diffusion and Vapor Pressure Modeling for Ultrathin Stacked Chip Scale Packages

97

3.7 Conclusions

101

References

102

4 Modeling of Moisture Diffusion and Whole-Field Vapor Pressure in Plastic Packages of IC Devices

104

4.1 Introduction

104

4.2 Moisture Diffusion Modeling Normalization Method

105

4.2.1 Theory

105

4.2.2 Thermal-Moisture Analogy

108

4.2.3 Example -- Application to a PBGA Package

109

4.3 Moisture Desorption Modeling Direct Moisture Concentration (DCA) Approach

110

4.3.1 Theory

110

4.3.2 Numerical Implementation

112

4.3.3 Verification

113

4.3.4 Analysis of Moisture Desorption for a Bi-material Model

115

4.3.5 Example -- Application to a PBGA Package

117

4.4 Whole-Field Vapor Pressure Model

119

4.4.1 Theory

119

4.4.2 Numerical Implementation

120

4.4.3 Analysis of Vapor Pressure Development During Reflow for a Bi-material Model

121

4.4.4 Whole-Field Vapor Pressure Modeling for FCBGA and PBGA Packages

122

4.5 Summary

123

Appendix: Table of the Saturated Water Vapor Density and Vapor Pressure at Different Temperatures

124

References

124

5 Characterization of Hygroscopic Deformations by Moir Interferometry

126

5.1 Introduction

126

5.2 Moir Interferometry

127

5.2.1 Real-Time Observation and Testing Apparatus

128

5.2.2 Tuning and Measurement

128

5.3 Experimental Procedure Using Moir Interferometry

129

5.3.1 Initial Preparation

129

5.3.2 Specimen Grating Replication

130

5.3.3 Moisture Content Measurement

131

5.3.4 Measurement of Hygroscopic Deformation

131

5.4 Hygroscopic Swelling Measurement of Mold Compounds

132

5.4.1 CHS of Mold Compounds

133

5.4.2 Comparison Between Hygroscopic and Thermal Deformations

136

5.4.3 Effect of Grating on Sorption and Desorption Characteristics of the Mold Compound

136

5.4.4 CHS Measurement Accuracy

137

5.5 Analysis of Plastic Quad Flat Package

138

5.5.1 Discussion

141

5.6 Summary

142

References

142

6 Characterization of Interfacial Hydrothermal Strength of Sandwiched Assembly Using Photomechanics Measurement Techniques

144

6.1 Introduction

144

6.2 Interfacial Fracture Mechanics Approach

146

6.3 Photomechanics Measurement Techniques

148

6.3.1 Moiré Interferometry

148

6.3.2 Digital Image Correlation (DIC)

149

6.4 Experimental Procedures for Interfacial Hydrothermal Strength Characterization

150

6.4.1 Specimen Preparation

150

6.4.2 Measurement of Thermal and Hygrothermal Deformation

151

6.4.3 Determination of Critical Interfacial Fracture Toughness

152

6.5 Interfacial Hydrothermal Strength of Sandwiched Assembly

152

6.5.1 Hygrothermal Displacement of the Assembly

152

6.5.2 Thermal Deformation of the Assembly

154

6.5.3 Fracture Toughness of the Assembly Under Hygrothermal Aging

157

6.5.4 Critical Interfacial Fracture Toughness of the Assembly

159

6.5.5 Reliability of Silicon/Underfill Interface of the Assembly

160

6.6 Summary

161

References

162

7 Hygroscopic Swelling of Polymeric Materials in Electronic Packaging: Characterization and Analysis

165

7.1 Introduction

165

7.2 Hygroscopic Swelling Characterization Using Point-Measurement Methods

166

7.3 Effect of Non-uniform Moisture Distribution in Determining CHS

169

7.3.1 Moisture Distribution

169

7.3.2 Hygroscopic Swelling-Induced Deformation

170

7.3.3 Averaged Approaches

171

7.3.3.1 Averaged Approach I

171

7.3.3.2 Averaged Approach II

172

7.3.4 Results

173

7.4 Effect of Hygroscopic Stress in Determining CHS

178

7.4.1 Problem Description

179

7.4.2 Theory -- Sequentially Coupled Field Transient Analysis

179

7.4.3 Results

181

7.5 General Guidelines for Characterizing Hygroscopic Swelling Properties

184

7.6 Coupled Nonlinear ThermalHygroscopic Stress Modeling

185

7.7 Conclusions

189

References

190

8 Modeling of Moisture Diffusion and Moisture-Induced Stresses in Semiconductor and MEMS Packages

192

8.1 Introduction

192

8.2 Technical Background

193

8.2.1 Moisture Diffusion

193

8.2.2 Analytical Solutions of Diffusion Equation

195

8.2.3 Hygroscopic Swelling

197

8.3 Modeling of Moisture Diffusion

197

8.3.1 Thermal--Moisture Analogy

198

8.3.1.1 Single Material Problems

198

8.3.1.2 Interfacial Discontinuity in Multi-material Problems

199

8.3.1.3 Normalized Analogy

200

8.3.1.4 Advanced Analogy

200

8.3.1.5 Validation of Analogies

202

8.3.2 Moisture Transport into/out of a Cavity: Effective-Volume Scheme

204

8.4 Modeling of Hygroscopic Swelling-Induced Stresses

208

8.4.1 Modeling Strategy for Hygro-thermo-mechanical Stress Analysis

208

8.4.2 Implementation Using ABAQUS

210

8.4.3 Verification of the Modeling Scheme

211

8.4.4 Discussion: Implementation Using ANSYS

213

8.5 Application to a Polymer Bi-material Structure

214

8.5.1 Bi-material Specimen

214

8.5.2 Experimental Procedure

216

8.5.3 Simulation Procedure

216

8.5.4 Validation of the FE Model

217

A.1 FDM Schemes for Mass Diffusion Equations

219

A.1.1 Anisothermal 1-D Problem

219

A.1.2 Isothermal Axisymmetric Problem

220

A.2 ANSYS Input Templates for the Advance Analogy

221

A.2.1 Transient Case

221

A.2.2 Anisothermal Case

222

A.3 Templates for the Combined Analysis

224

A.3.1 Program to Change the Record Key

224

A.3.2 Example Program for UEXPAN

226

A.3.3 ANSYS Input Template for Hygro-Thermal Loading

227

References

227

9 Methodology for Integrated Vapor Pressure, Hygroswelling, and Thermo-mechanical Stress Modeling of IC Packages

231

9.1 Introduction

231

9.2 Moisture Diffusion Modeling

232

9.2.1 Modeling Methodology

232

9.2.2 Modeling Results

235

9.3 Thermal Modeling

235

9.3.1 Modeling Methodology

235

9.3.2 Modeling Results

236

9.4 Vapor Pressure Modeling [11]

237

9.4.1 Modeling Methodology

237

9.4.2 Modeling Results

239

9.5 Hygro-mechanical Modeling

240

9.6 Thermo-mechanical Modeling

242

9.7 Integrated Stress Modeling

242

9.7.1 Modeling Methodology

242

9.7.2 Modeling Results

243

9.8 Interfacial Fracture Mechanics Modeling

244

9.8.1 Modeling Methodology

244

9.8.2 Modeling Results

246

9.9 Integrated Stress Modeling for a Pressure Cooker Test

247

9.9.1 Modeling Methodology

247

9.9.2 Moisture Diffusion

248

9.9.3 Hygro-mechanical Stress During PCT

249

9.9.4 Combined Hygro-mechanical Stress and Thermo-mechanical Stress During PCT

250

9.10 Conclusions

251

References

252

10 Failure Criterion for Moisture-Sensitive Plastic Packages of Integrated Circuit (IC) Devices: Application and Extension of the Theory of Thin Plates of Large Deflections

254

10.1 Introduction

254

10.2 Analysis

256

10.2.1 Constitutive Equations

256

10.2.2 Boundary Conditions

259

10.2.3 Stresses

260

10.2.4 Special Cases

261

10.2.5 Initial Curvature and Initial Stresses

262

10.2.6 Elongated Package

266

10.2.7 von Mises Stress

276

10.2.8 Simplified Approach

277

10.3 Numerical Examples

277

10.4 Calculated Data

279

10.5 Conclusions

279

Appendix. Clamped Plate of Finite Aspect Ratio Experiencing Large Deflections

280

References

285

11 Continuum Theory in Moisture-Induced Failures of Encapsulated IC Devices

288

11.1 Introduction

288

11.2 Instability of Single Void Growth

292

11.2.1 Elasto-Plastic Model

292

11.2.2 Hyperelastic Model

295

11.3 Void Behavior at the Interface

296

11.4 Extension of the Gurson Model and Void Evolution Rate

298

11.5 A Rigid-Plastic Model for Package Bulging Analysis

300

11.6 Governing Equations for a Deforming Polymer with Moisture Considering Phase Transition

301

11.7 Concluding Remarks

304

References

305

12 Mechanism-Based Modeling of Thermal- and Moisture-Induced Failure of IC Devices

309

12.1 Introduction

309

12.2 Vapor Pressure Modeling in Rate-Independent ElasticPlastic Solids

311

12.3 Vapor Pressure and Residual Stress Effects

312

12.3.1 Adhesive Failure Mechanisms

313

12.3.2 Interfacial Toughness

318

12.3.2.1 Parallel Delamination Along Interfaces of Adhesive Joints

318

12.3.2.2 Interfacial Toughness Under Mixed Mode Loading

320

12.3.3 Full-Field Analysis of IC Packages

323

12.4 Pressure Sensitivity and Plastic Dilatancy Contributions

325

12.4.1 Macroscopic Response on Void Growth and Interaction

327

12.4.2 Extended Damage Zone Formation

329

12.5 Porous Solids with Pressure-Sensitivity and Non-linear Viscosity

331

12.5.1 Pressure Sensitivity, Dilatancy, and Softening--Rehardening

331

12.5.2 Nonlinear Viscosity

334

References

336

13 New Method for Equivalent Acceleration of IPC/JEDEC Moisture Sensitivity Levels

340

13.1 Introduction

340

13.2 Moisture Sensitivity Test Classifications Joint IPC/JEDEC Industry Standard J-STD-020D

341

13.3 Local Moisture Concentration Equivalency-Based Method [ 2 ]

344

13.3.1 Theory

344

13.3.2 Experimental Validations

348

13.3.3 Discussions

351

13.4 New Method for Equivalent Acceleration of IPC/JEDEC Moisture Sensitivity Test

353

13.4.1 Methodology

353

13.4.2 Finite Element Modeling

354

13.4.3 Experimental Validation

357

13.5 Conclusions

363

References

364

14 Moisture Sensitivity Level (MSL) Capability of Plastic-Encapsulated Packages

366

14.1 Introduction

366

14.2 Experimental Procedures and Setup

369

14.2.1 Mold Compound Chemistry/Properties

370

14.2.2 Tensile Pull Sample Description/Instron Machine Setup

370

14.2.3 Moisture Absorption Samples

374

14.2.4 Moisture Sensitivity Testing

374

14.2.5 QFN Package Description

374

14.2.6 D 2 Pak Package Description

375

14.3 Experimental Data and Analysis

376

14.3.1 First Series of Experiments

376

14.3.1.1 Pull Tab Adhesion Data

376

14.3.1.2 Moisture Absorption

377

14.3.1.3 Correlation of Adhesion and Moisture Absorption with Package MSL Performance

378

14.3.1.4 Experimental Conclusions for Mold Compound Chemistry Experiments

381

14.3.2 Second Series of Experiments

382

14.3.2.1 Pull Tab Adhesion

382

14.3.2.2 Moisture Sensitivity Testing (Level 1at 260C)

382

14.3.2.3 Experimental Conclusions for the Second Series of Experiments

385

14.3.3 Additional Experimental Studies

386

14.3.3.1 Effect of Mold Cap Thickness of QFN Packages

386

14.3.3.2 Effect of Mold Compound Compaction

386

14.4 Conclusions

392

References

393

15 Hygrothermal Delamination Analysis of Quad Flat No-Lead (QFN) Packages

396

15.1 Introduction

396

15.2 Manufacture of Dummy QFN Packages

397

15.3 Mechanical Tests for Interfacial Strength

398

15.4 Moisture Sensitivity Tests of Dummy QFN Packages

400

15.5 Finite Element Model

401

15.6 Thermo-mechanical Stress Analysis

401

15.7 Hygro-mechanical Stress Analysis

405

15.8 Integrated Stress Analysis

409

15.9 Discussion

414

15.10 Concluding Remarks

415

References

416

16 Industrial Applications of Moisture-Related ReliabilityProblems

417

16.1 Introduction

417

16.2 Application 1: Wire Bond Reliability of a BGA Package Subjected to HAST

419

16.2.1 Description of the Carrier

420

16.2.2 Material Characterization

421

16.2.3 Finite Element Modeling

422

16.2.4 Results

423

16.3 Application 2: Moisture-Related Structural Similarity Rules

424

16.3.1 Description of the Carrier

425

16.3.2 Material Characterization

426

16.3.3 Finite Element Modeling

427

16.3.4 Results

428

16.4 Application 3: Moisture Sensitivity of System-in-Packages

430

16.4.1 Carrier Description

432

16.4.2 Finite Element Modeling

433

16.4.3 Results

434

16.5 Conclusions

439

References

439

17 Underfill Selection Against Moisture in Flip ChipBGA Packages

441

17.1 Introduction

441

17.2 Design of Experiments

442

17.2.1 Test Vehicles

442

17.2.2 ''No-flux'' Assembly Process

443

17.2.3 Plasma Grafting Surface Treatment

444

17.2.4 Underfill Voiding

444

17.3 Material Characterization

445

17.3.1 Thermo-Mechanical Properties

445

17.3.2 Moisture Diffusivity and Saturated Moisture Concentration

446

17.3.3 Pull/Shear Adhesion Test and Results

447

17.4 Moisture/Reflow Sensitivity Test Results and Failure Analysis

452

17.4.1 Effect of the Underfill Material Selection

452

17.4.2 Failure Mode Analysis

453

17.4.3 Effect of Flux Residue

454

17.4.4 Effect of Plasma Grafting Treatment

454

17.4.5 Effect of Overmolding

455

17.4.6 Effect of Voids in Underfill

457

17.5 Finite Element Modeling

457

17.5.1 Vapor Pressure Modeling

457

17.5.2 Thermal Stress Analysis on Overmolding Effect

458

17.6 Integrated Analysis of Moisture-Induced Delamination at Reflow

461

17.7 Conclusions

463

References

464

18 Moisture Sensitivity Investigations of 3D Stacked-Die Chip-Scale Packages (SCSPs)

467

18.1 Introduction

467

18.2 Experimental

468

18.2.1 Test Vehicle Description

468

18.2.2 Reflow Profile Setting

468

18.2.3 Substrate Design

469

18.2.4 Die-Attach Film Selection

470

18.2.5 Material Properties of Die-Attach Films

470

18.2.6 Moisture/Reflow Sensitivity Test Procedures

471

18.3 Test Results and Failure Analysis

472

18.3.1 Effect of Reflow Profiles

472

18.3.2 Effect of Substrate Design

473

18.3.3 Evaluation of Different Die-Attach Films

474

18.4 Finite Element Analysis

476

18.4.1 Effect of Substrate Thickness

478

18.4.2 Effect of Reflow Profile

481

18.5 Summary

483

References

483

19 Automated Simulation System of Moisture Diffusion and Hygrothermal Stress for Microelectronic Packaging

485

19.1 Introduction

485

19.2 Basic Formulations

486

19.2.1 Moisture Diffusion and Hygroswelling

486

19.2.2 Vapor Pressure Model

487

19.2.3 Equivalent Coefficient of Thermal Expansion (CTE)

488

19.3 Development of Automated Simulation System for Moisture Diffusion and Hygrothermal Stress

489

19.3.1 ANSYS Workbench Overview

489

19.3.2 General Package Automated Simulation Platform

490

19.3.3 Structure of AutoSim in Moisture-Related Analysis

494

19.3.3.1 Modules of Moisture-Related Automated Simulation System

495

19.4 Application of AutoSim

497

19.4.1 Moisture Diffusion Analysis for an MLP Package

497

19.4.1.1 Moisture Diffusion

497

19.4.1.2 Vapor Pressure Simulation

498

19.4.1.3 Integrated Stress Modeling

498

19.4.2 Material Parameter Examination

501

19.5 Conclusion

504

References

506

20 Moisture-Driven Electromigrative Degradation in Microelectronic Packages

508

20.1 Introduction

508

20.2 Electrochemical Migration (ECM)

508

20.3 ECM Mechanism

509

20.4 ECM: Contributing Factors

512

20.4.1 Moisture (Humidity) Factor

512

20.4.2 Voltage Factor

513

20.4.3 Temperature Factor

513

20.4.4 Material Factor

514

20.4.5 Effect of Ionic Contaminants: Complexation and Metal-Ion Liberation

515

20.4.6 Effect of Contaminants on Water Uptake

517

20.5 Mechanism of Ion Transport in ECM

518

20.6 Dendritic Morphology

522

20.7 Summary

525

References

526

21 Interfacial Moisture Diffusion: Molecular Dynamics Simulation and Experimental Evaluation

528

21.1 Introduction

528

21.2 Molecular Dynamics Simulation of Moisture Diffusion

529

21.2.1 Molecular Dynamics Simulation

529

21.2.2 Molecular Dynamics Models of Moisture Diffusion

531

21.2.3 Effect of Interfacial Adhesion of Copper/Epoxy Under Different Moisture Levels

535

21.3 Experimental Methods on Detecting Interfacial Moisture Diffusion

537

21.3.1 Background

537

21.3.2 Interfacial Moisture Diffusion Measurement Example

540

21.3.2.1 Sample Preparation

540

21.3.2.2 FTIR--MIR Measurement

540

21.3.2.3 FTIR--MIR Signal Calibration

542

21.3.2.4 Results of FTIR--MIR Measurement

542

21.3.3 Effect of Copper Oxide Content Under Interfacial Moisture Diffusion on Adhesion

544

21.3.3.1 Work of Adhesion

544

21.3.3.2 X-Ray Photoelectron Spectroscopy

546

21.3.3.3 Moisture and Copper Oxide-Related Adhesion

547

21.4 Summary

550

References

551

About the Editors

555

Subject Index

558